AD-769 868 FLIGHT SIMULATOR EXPERIMENTS AND ANALY-SES IN SUPPORT OF FURTHER DEVELOPMENT OF MUL-F-83300 V/STOL F LYING QUALITIES SPECIFICATION Edward W. Vinje, et al United Aircraft Research Laboratories Prepared for: Air Force Flight Dynamics Laboratory June 1973 **DISTRIBUTED BY:** U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 AD 769868 | Security Classification | TJ 167 | 000 | |---|--|---| | DOCUMENT CONTR | | | | (Security classification of title, body of abstract and indexing a | والمناطنات كالكناكات فكالسابات والمساور | والتباء المستحد | | ORIGINATING ACTIVITY (Corporate author) United Aircraft Research Laboratories | | ASSIFIED | | 400 Main Street | ish. GROUP | , | | East Hartford, Connecticut 06108 | | N/A | | 3 REPORT YITLE | | | | FLIGHT SIMULATOR EXPERIMENTS AND ANAL | YSES IN SUPPORT OF FUE | RTHER | | DEVELOPMENT OF MIL-F-83300 - V/STOL F | LYING QUALITIES SPECIF | CATION | | | | | | 4. DESCRIPTIVE NOTES (Type of report and inclusive dates) | h 1072 | | | Final Report January 1972 through Marc 5. AUTHORIS) (First name, middle initial, fast name) | 11 7212 | | | Edward W. Vinje | | | | David P. Miller | | | | pavio r. Miller | | | | 6. REPORT DATE | 74. TOTAL NO. OF PAGES | 7b. NO. OF REFS | | June 1973 | 224 | 16 | | SE. CONTRACT OR GRANT NO. | 9a, ORIGINATOR'S REPORT NUME |)ER(\$) | | F33615-71-C-1722 | M911287-15 | | | b. PROJECT NO. | | | | 643A. | | | | с. | 9b. OTHER REPORT NO(\$) (Any of this report) | her numbers that may be assigned | | d. | AFFDL-TR-73-34 | | | 10. DISTRIBUTION STATEMENT | | | | | | | | | | | | | | | | 11- SUPPLEMENTARY NOTES | 12. SPONSORING MILITARY ACTI | | | N/A | Air Force Flight Dyn | | | | Wright-Patterson AF | B, Ohic 45433 | | | | | ducted to provide data for use in substantiating, refining and extending the hovering and low-speed-flight portion of MIL-F-83300 - V/STOL Flying Qualities Specification. For longitudinal and lateral control, the following areas were investigated: turbulence intensity, control lags and delays, control-moment limits, control moments through stored energy, inter-exis motion coupling, independent thrust-vector control and rate-command/attitude-hold control. For height and directional control, the effects of damping levels, control lags and delays, and control power limits were investigated. Opinion ratings, pilot comments, and pilot-selected control sensitivities were recorded in the flight simulator experiments; control-power-usage data were also obtained. The results indicate that the MIL-F-83300 Level 1 requirement for V/STOL dynamic response provides aircraft dynamics which remain controllable for nominal increases in gust intensity. The specification appears to generally exclude pitch and roll control lags, and lags in thrust response, which cause unsatisfactory flying qualities; it admits lags for which pilot opinion does not deteriorate. However, it excludes directional control lags which do not degrade opinion. The results further indicate that the specification for installed control moments provides levels which are satisfactory but not excessive. Control sensitivities selected by the pilots also generally fall within the boundaries specified, but are much closer to the lower limit than to the upper. Finally, data from the height control study show that minimum Z_W levels of .../, | D | 7 | FORA | | 1 | A | 7 | 2 | |---|---|------|---|-----|---|---|---| | v | v | INOV | 6 | 5 B | 4 | Æ | J | (PAGE 1) UNCLASSIFIED 5/N 0101-807-6801 Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE US Department of Commerce Springfield VA 22151 Security Classification #### UNCLASSIFIED 13. Abstract (Continued) -0.25 to -0.35 are necessary for satisfactory flying qualities with unlimited T/W. Results for unconventional control techniques evaluated indicate that rotor-propulsion system stored energy can be used to offset limitations in installed control power. Independent thrust-vector control can be used for hovering and maneuvering when properly implemented. Rate-command/attitude-hold control does not appear to provide benefits for hover and low-speed flight. The exceedance data show that speed-stability and damping are the configuration parameters having the greatest effects on control power usage. Control system lags have little effect on pitch and roll control-moment usage, but they increase yaw control-moment and thrust usage somewhat. The largest amounts of control moment were used for the quick stop task; the smallest amounts were used for hover and turn-over-a-spot. The data indicate that the installed total moment for pitch plus roll control must be sufficient to account for simultaneous usage by the pilot; it cannot be assumed that pilots make independent pitch and roll control inputs. UNCLASSIFIED Security Claraffication LINK A LINK B LINK C FOLE ROLI ROLE Fixed- end moving-base simulation data V/STOL aircraft handling qualities Hovering and low-speed flight Stability augmentation requirements MIL-F-83300 - V/STOL Flying Qualities Specification | D . FORM 1473 (BACK) AGE 2) | 16 | UNCLA | SSIFTE
Classific | | | |-----------------------------|----|-------|---------------------|--|--| | | | | | | | # FLIGHT SIMULATOR EXPERIMENTS AND ANALYSES IN SUPPORT OF FURTHER DEVELOPMENT OF MIL-F-83300 - V/STOL FLYING QUALITIES SPECIFICATION EDWARD W. VINJE DAVID P. MILLER Approved for public release; distribution unlimited ### FOREWORD This report was prepared for the United States Air Force by the United Aircraft Research Laboratories, East Hartford, Connecticut. The work reported herein was performed by the United Aircraft Research Laboratories under the sponsorship of the Air Force Flight Dynamics Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio. The research was conducted under Subcontract S-72-4 to Calspan Corporation (formerly the Cornell Aeronautical Laboratory) as part of Air Force Contract F33615-71-C-1722, Project 643A. The AFFDL project engineer was Mr. Terry Neighbor (AFFDL/FGC) and the Calspan project engineer was Mr. David Key. This technical report was submitted by the author in June 1973. It is also published as United Aircraft Research Laboratories Report M911287-15. This technical report has been reviewed and is approved. Chief, Control Criteria Branch Flight Control Division Air Force Flight Dynamics Laboratory ### ABSTRACT Fixed- and moving-base flight simulator experiments and analyses were conducted to provide data for use in substantiating, refining and extending the hovering and low-speed-flight portion of MIL-F-83300 - V/STOL Flying Qualities Specification. For longitudinal and lateral control, the following areas were investigated: turbulence intensity, control lags and delays, control-moment limits, control moments through stored energy, inter-axis motion coupling, independent thrust-vector control and rate-command/attitude-hold control. For height and directional control, the effects of damping levels, control lags and delays, and control power limits were investigated. Opinion ratings, pilot comments, and pilot-selected control sensitivities were recorded in the flight simulator experiments; control-power-usage data were also obtained. The results indicate that the MIL-F-83300 Level 1 requirement for V/STOL dynamic response provides aircraft dynamics which remain controllable for nominal increases in gust intensity. The specification appears to generally exclude pitch and roll control lags, and lags in thrust response, which cause unsatisfactory flying qualities; it admits lags for which pilot opinion does not deteriorate. However, it also excludes directional control lags which do not degrade opinion. The results further indicate that the specification for installed control moments provides levels which are satisfactory but not excessive. Control sensitivities selected by the pilots also generally fall within the boundaries specified, but are much closer to the lower limit than to the upper. Finally, data from the height control study show that minimum $Z_{\rm W}$ levels of -0.25 to -0.35 are necessary for satisfactory flying qualities with unlimited $T/{\rm W}$. Results for unconventional control techniques evaluated indicate that rotor-propulsion system stored energy can be used to offset limitations in installed control power. Independent thrust-vector control can be used for hovering and maneuvering when properly implemented. Rate-command/attitude-hold control does not appear to provide benefits for hover and low-speed flight. The exceedance data show that speed stability and damping are the configuration parameters having the greatest effects on control power usage. Control system lags have little effect on pitch and roll control-moment usage, but they increase yaw control-moment and thrust usage somewhat. The largest amounts of control moment were used for the quick stop task; the smallest amounts were used for hover and turn-over-a-spot. The data indicate that the installed total moment for pitch plus roll control must be sufficient to account for simultaneous usage by the pilot; it cannot be assumed that pilots make independent pitch and roll control inputs. # TABLE OF CONTENTS | SECTION | | PAGE | |----------|--|----------------| | I | introduction | 1 | | II | BACKGROUND OF EXPERIMENTAL PROGRAM | 3 | | | A. Flight Simulator Studies | 3
15
20 | | III | RESULTS OF LONGITUDINAL AND IATERAL CONTROL STUDIES | 20
25 | | | A. Flying Qualities Results | 25
44 | | ıv | RESULTS OF HEIGHT CONTROL STUDIES | 53 | | | A. Flying Qualities Results | 53
58 | | v | RESULTS OF DIRECTIONAL CONTROL STUDIES | 61 | | | A. Flying
Qualities Results | 61
65 | | VI | SUMMARY OF PRINCIPAL RESULTS AND RECOMMENTATIONS FOR FURTHER RESEARCH | 67 | | | A. Flying Qualities Results Pertaining to the Development of MIL-F-83300 | 67
70
71 | | | D. Recommendations for Further Research | 71 | | APPENDIX | A SUMMARY OF FLYING QUALITIES DAYA FROM UARL PILOT EVALUATIONS | 129 | | APPENDIX | B SUMMARY OF PILOT COMMENTS FROM UARL PILOT EVALUATIONS | 141 | | APPENDIX | C SUMMARY OF CONTROL-POWER-USAGE DATA | 179 | | APPENDIX | D SUMMARY OF FLYING QUALITIES DATA AND PILOT COMMENTS FROM CALSPAN PILOT EVALUATIONS | 197 | # TABLE OF CONTENTS (Cont.d) | SECTION | PAGE | |--|------| | APPINDIX E CONTROL-MOMENT EXCEEDANCE PLOTS FOR THE MANEUVERING SUBTASK | 207 | | APPENDIX F ADDITIONAL DETAILS OF THE UARL FLIGHT SIMULATION | 219 | | REFERENCES | 223 | # LIST OF ILLUSTRATIONS | FIGURE | | PAGE | |--------|---|------| | 1 | Root Locations for UARL Basic Configurations | 72 | | 2 | United Aircraft Corporation V/STOL Aircraft Flight Simulator | 73 | | 3 | Contact Analog Display for Hovering and Low-Speed Maneuvering Task | 74 | | 14 | Comparison of Averaged Pilot Ratings from UARL and Norair Simulations for Similar Configurations | 75 | | 5 | Representa : e Exceedance Plots Showing Effects of Subtask on Control-Moment Usage | 76 | | 6 | Variations in Moment Level Exceeded 5 Percent of Time for Two Pilots and Fixed- and Moving-Base Simulator Operation | 77 | | 7 | Variation in Pilot Rating with Turbulence Intensity | 78 | | 8 | Effect of Pitch and Roll Dynamics Level on Degradation in Pilot Rating with Turbulence Intensity | 79 | | 9 | Power Spectrum of Open-Loop Attitude Response to Simulated Turbulence for Basic Configurations | 80 | | 10 | Power Spectrum of Open-Loop Position Response to Simulated Turbulence for Basic Configurations | 8ī | | 11 | Phase Lag of Pilot-Pitch (Roll) Open-Loop Dynamics for UARL Basic Configurations | 82 | | 12 | Longitudinal Control Sensitivities from Turbulence Study | 83 | | 13 | Tateral Control Sensitivities from Turbulence Study | 84 | | 14 | Variation in Pilot Rating with Time Constant of First-Order Lag in Control Response | 85 | | 15 | Effect of Pitch and Roll Dynamics Level on Degradation in Pilot Rating with First-Order Lag Time Constant | 86 | | 16 | Phase Lags from First-Order Lags and Delays | 87 | | FIGURE | | PAGE | |--------|--|------| | 17 | Magnitude and Phase Characteristics for Pilot-Pitch (Roll) Open-Loop Dynamics with Second-Order Control Lags | 88 | | 18 | Pilot Ratings for Second-Order Lags in Pitch and Roll Control Response | 89 | | 19 | Longitudinal Control Sensitivity Results Showing the Effects of First-Order Control Lag | 90 | | 20 | Lateral Control Sensitivity Results Showing the Effects of First-Order Control Lag | 91 | | 21 | Pilot Rating Results for Control Moment Limits | 92 | | 22 | Pilot Ratings Showing the Effects of Control Moment Limits with First-Order Control System Lags | 93 | | 23 | Change in Pilot Rating with Level of Incremental Pitch
Control-Moment Available Through Stored Energy | 94 | | 24 | Time Histories of Pitch Control-Moment Usage for the Maneuvering Task with Incremental Moment Available Through Stored Energy | 95 | | 25 | Effects of Inter-Axis Notion Coupling on Pilot Rating and Control Sensitivities | 96 | | 26 | Pilot Rating Results from the Study of Independent Thrust-Vector Control | 97 | | 27 | Magnitude and Phase Characteristics for Pilot-Pitch (Roll) Attitude Open-Loop Dynamics with Rate-Command/Attitude-Hold Control | 98 | | 28 | Pilot Rating Results for a Rate-Command/Attitude-Hold Control System | 99 | | 29 | Control Sensitivities from the Study of Rate-Command/
Attitude-Hold Control | 100 | | 30 | Effect of Turbulence on Five-Percent Exceedance Moment
Level for a V/STOL Configuration with Small Response to | נחנ | | FIGURE | | PACE | |--------|---|------| | 31 | Effect of Turbulence on Five-Percent Exceedance Moment Level for a V/STOL Configuration with Large Response to Turbulence | 102 | | 32 | Five-Percent Exceedance Moment Levels Showing the Effect of Aircraft Speed-Stability Farameters | 103 | | 33 | Five-Percent Exceedance Moment Levels for V/STOL Configurations Having Different Drag Parameters | 104 | | 34 | Five-Percent Moment Levels for Three V/STOL
Configurations Exhibiting the Three MIL-F-83300 Levels
of Flying Qualities | 105 | | 35 | Effects of Control Lags on Five-Percent Moment Levels for Configuration with Low Response to Turbuleace | 106 | | 36 | Effects of Control Lags on Five-Percent Moment Levels for Configuration with Moderate Response to Turbulence | 107 | | 37 | Effect of Rate and Control Coupling on Pitch 5-Percent Exceedance Control-Moment Level | 108 | | 38 | Effect of Subtask on 5-Percent Control-Moment-Exceedance Level | 109 | | 39 | Comparison of Actual Five-Percent Simultaneous Usage Moment Levels for Hover with Hypothetical Maximum and Minimum Values for These Levels | 110 | | 40 | Percent Time Total Moment Command Exceeded Installed Pitch and Roll Control Moments for Flight with Limited Available Moments | 111 | | 41 | Comparison Between Pitch Control-Moment 5-Percent Exceedance Levels for Independent Thrust-Vector Control and Conventional Position Control | 112 | | 42 | Five-Percent Pitch Control-Moment Exceedance Levels for Rate-Command/Attitude-Hold Control System | 113 | | FIGURE | | PAGE | |--------|--|------| | 43 | Change in Pilot Rating of Height Control with Height Velocity Damping | 114 | | յդյ | Phase Lags for Pilot-Height Open-Loop Dynamics at Several Z _w Levels | 115 | | 45 | Height Control Sensitivity Results Showing the Effects of Height Velocity Damping | 116 | | 46 | Pilot Rating Results Showing the Interaction Between Height Velocity Damping and Thrust-to-Weight Ratio | 117 | | 47 | Comparison of Pilot Rating Results for Aerodynamic Versus Stability Augmentation System Height Velocity Damping | 118 | | 48 | Pilot Rating Results Showing the Interaction Between First-Order Lag Time Constant and Height Velocity Damping | 119 | | 49 | Change in Pilot Ratings Which Results from Incremental Thrust Available Through Stored Energy | 120 | | 50 | Effect of Z_{WP} on Incremental Thrust 5-Percent Exceedance Levels, $(T/W-1)_5$, Computed for Increased Thrust Commands | 121 | | 51. | Percent Time Installed Thrust-to-Weight Ratio Limits Exceeded | 122 | | 52 | Effect of First-Order Thrust Lags on Incremental Thrust 5-Percent Exceedance Levels Computed for Increased Thrust Commands | 123 | | 53 | Pilot Rating Results Showing the Effects of Yaw Rate Damping and Lags and Delays in Yaw Control Response | 124 | | 54 | Phase Lag for Pilot-Yaw Open-Loop Dynamics at Several Levels of $N_{\rm r}$ | 125 | | 55 | Effects of Yaw Control-Moment Limits on Pilot Rating | 126 | | 56 | Yaw Control-Moment-Usage Results | 127 | | FIGURE | | PAGE | |--------|---|-------| | E-1 | Effect of Turbulence on Exceedance Results for a V/STOL Configuration with Small Response to Turbulence | . 208 | | E-2 | Effect of Turbulence on Exceedance Results for a V/STOL Configuration with Large Response to Turbulence | . 209 | | E-3 | Exceedance Results Showing the Effect of Aircraft Speed-Stability Parameters | . 210 | | E-4 | Exceedance Results for V/STOL Configurations Having Different Drag Parameters | . 211 | | E-5 | Exceedance Data for Three V/STOL Configurations Exhibiting the Three MIL-F-83300 Levels of Flying Qualities | . 212 | | E-6 | Effects of Control Lags on Exceedance Results for a Configuration with Moderate Response to Turbulence | . 213 | | E-7 | Effect of Rate and Control Coupling on Pitch Exceedance Results | . 214 | | E-8 | Comparison Between Pitch Control-Moment Exceedance Data for Independent Thrust-Vector Control and Conventional Position Control | . 215 | | E-9 | Effect of Z_{W_T} on Incremental Thrust, (T/W-1), Exc. ice Results Computed for Increased Thrust Commands | . 216 | | E-10 | Yaw Control-Moment Usage Exceedance Results | . 217 | | F-1 | Schematic Diagram of UAC V/STOL Flight Simulator Motion Washout System | . 222 | ### LIST OF TABLES | TABLE | | PAGE | |-------|---|------------| | I | Stability Derivatives and Root Locations for UARL Basic Configurations | 4 | | II | Flight Simulator Angular and Linear Motion Limits | 17 | | III | Comparison of Pilot Ratings From Norair and Current UARL Study | 19 | | IV | Cooper-Harper Pilot Rating Scale | 21 | | V | UARL Flying Qualities Questionnaire | 22 | | VI | Comparison Between Pilot Opinion Ratings and the MIL-F-83300 Requirement for Acceptable Attitude Control Lags | 29 | | VII | Effects of Time Delays and Control System Lags on Pilot Ratings | 30 | | VIII | Comparison Between Averaged Longitudinal and Leteral Control Sensitivities From the Control Lag Study and the MIL-F-83300 Requirements | 33 | | IX | Comparison of UARL Acceptable Control-Moment Limits with MIL-F-83300 Requirements | 3 4 | | х | Comparison of Maximum Five-Percent Exceedance Moment
Levels Used for Any Subtask with Acceptable Limits on
Installed Roll and Pitch Control Moments | 36 | | XI | Effect of Motion Cues on Pilot Ratings for Longitudinal and
Lateral Control | կկ | | XII | Effect of Motion Cues on Pilot Ratings for Height Control | 57 | | XIII | Effect of Motion Cues on Pilot Ratings for Directional Control | 64 | | A- I | Summary of Parameters for Cases Evaluated and Key to Tables Summarizing Data | 130 | | A-II | Flying Qualities Results from the Study of the Effects of Turbulence Intensity | 131 | # LIST OF TABLES (Cont'd) | TABLE | | PAGE | |--------|--|------| | A-III | Longitudinal and Lateral Flying Qualities Results from the Study of Control System Lags and Delays | 132 | | A-IV | Flying Qualities Results from the Study of Pitch, Roll, and Yaw Control Moment Limits | 133 | | A-V | Longitudinal Flying Qualities Results from the Study of Incremental Control Moments Through Stored Energy | 134 | | A-VI | Longitudinal and Lateral Flying Qualities Results from the Study of Rate-Command/Attitude-Hold Control | 135 | | A-VII | Longitudinal Flying Qualities Results from the Study of Independent Thrust-Vector Control | 136 | | A-VIII | Longitudinal and Lateral Flying Qualities Results from the Study of Inter-Axis Motion Coupling | 137 | | A-IX | Height Control Flying Qualities Results from the Study of the Interaction Between Height Velocity Ramping and Thrust-to-Weight Ratio | 138 | | A-X | Height Control Flying Qualities Results from the Studies of Control Lags and Delays and Incremental Thrust Through Stored Energy | 139 | | A-XI | Directional Control Flying Qualities Results | 140 | | B-I | Pilot Comments from the Study of Turbulence Intensity | 142 | | B-II | Pilot Comments from the Study of Longitudinal and Lateral Control System Lags and Delays | 146 | | B-III | Pilot Comments from the Study of Pitch, Roll and Yaw Control Moment Limits | 1.52 | | B- IV | Pilot Comments from the Study of Incremental Pitch
Control Moments Through Stored Energy | 157 | | B-V | Pilot Comments from the Study of Longitudinal and Lateral Inter-Axis Motion Coupling | 159 | # LIST OF TABLES (Cont'd) | TABLE | • | PAGE | |--------|--|------| | B-VI | Pilot Comments from the Study of Longitudinal Independent Thrust-Vector Control | 161 | | B-VII | Pilot Comments from the Study of Iongitudinal and Iateral Rate-Command/Attitude-Hold Control | 164 | | B-VIII | Pilot Comments from the Height Control Study of the Interaction Between Height Velocity Damping and Thrust-to-Weight Ratio | 166 | | B-IX | Pilot Comments from the Studies of Height Control System Lags and Delays and Incremental Thrust Through Stored Energy | 171 | | B-X | Pilot Comments from the Study of Directional Control | 173 | | C-1 | Pitch, Roll and Yaw Control Moment Levels Exceeded 5 Percent of the Time from the Study of Turbulence Intensity | 180 | | C-II | Pitch, Roll and Yaw Control-Moment Levels Exceeded 5 Percent of the Time from the Study of Control System Lags and Delays | 182 | | C-III | Percent Time Pitch, Roll and Yaw Control-Moment Commands Exceeded Installed Moment Limits | 184 | | C-IV | Pitch, Roll and Yew Control-Moment Levels Exceeded 5 Percent of the Time from the Study of Inter-Axis Motion Coupling | 186 | | C-V | Pitch Control-Moment and Thrust-Vector-Angle Levels Exceeded 5 Percent of the Time from the Study of Independent Thrust-Vector Control | 187 | | C-VI | Pitch, Roll and Yaw Control-Moment Levels Exceeded 5 Percent of the Time from the Study of Rate-Command/ Attitude-Hold Control | 188 | | C-VII | Pilot Commanded and Total Thrust Usage Results from the Height Control Study | 191 | ### LIST OF TABLES (Cont'd) | TABLE | | PAGE | |--------|---|-------| | C-VIII | Yaw, Pitch and Roll Control-Moment Results from the Directional Control Study | • 194 | | D-I | Flying Qualities Results from Calspan Pilot Evaluations . | . 198 | | D-II | Pilot Comments from Calspan Pilot Evaluations | . 199 | ### SYMBOLS | BCI-BC6 | Basic V/STOL aircraft configurations 1 through 6 (see Table I) | |--|---| | c_1, c_2, c_3 | Coefficients used in nonlinear representation for control moments available through rotor-propulsion system stored energy (see Eq. (1)) | | CM _m | Maximum pitch, roll and yaw moments available for control, rad/sec ² | | CM _{SE} | General notation for control moments available through stored energy, red/sec ² | | CM ₅ | Average pitch, roll and yaw control moments exceeded 5-percent of the time with unlimited moments available, rad/sec2 | | d _e ,d _a | Time delays in pitch and roll response, respectively, to control inputs, sec | | d_{r_i} | Time delay in thrust response to collective control input | | g | Gravitutional constant, 32.2 ft/sec ² | | HOV | Designates hover subtask | | I_x, I_y, I_z | Moments of inertia in roll, pitch and yaw, slug-ft2 | | j | √-1 | | L_{c} | Roll control moment commanded by pilot and SAS divided by I_x , rad/sec^2 | | $\mathbf{L}_{\mathbf{c}_{\mathbf{m}}}$ | Maximum available L _c , rad/sec ² | | L_{C_O} | Reference value of Lc, rad/sec ² | | $\mathbf{\tilde{L}_{c_o}}$ | Averaged L_{C_0} , rad/sec ² | | $\mathtt{L}_{\mathbf{p}}$ | Roll rate damping divided by I_X , per sec | | $\mathbf{L}_{\mathbf{Q}}$ | Rolling moment due to pitch rate divided by I_X , per sec | | | | | Lvg | Lateral speed-stability parameter divided by $I_{\rm X}$, per \sec^3 | |--|---| | $L_{\delta_{a}}$ | Lateral control sensitivity divided by I_X , $(rad/sec^2)/in$. | | ${\mathtt L}_{\operatorname{\delta e}}$ | Rolling moment due to longitudinal control stick input, (rad/sec ²)/in. | | $\mathtt{L}_{\boldsymbol{\phi}}$ | Roll attitude stabilization divided by I_X , per \sec^2 | | m | Aircraft mass, slugs | | MAN | Designates entire maneuvering subtask, i.e., motion in both the x and y directions | | M _C | Pitch control moment commanded by pilot and SAS divided by I_y , $\mathrm{rad/sec}^2$ | | $\Delta M_{\mathbf{c}}$ | Increment to pitch control moment available through rotor-propulsion system stored energy, rad/sec ² | | $M_{\mathbf{c_m}}$ | Maximum available M_c , rad/sec ² | | $M_{\mathbf{c_o}}$ | Reference value of M _c , rad/sec ² | | $\overline{\mathtt{M}}_{\mathtt{C}_{O}}$ | Averaged Mco, rad/sec ² | | M _{e5} | Pitch control-moment level exceeded 5-percent of the time with unlimited moment available divided by I_y , rad/sec ² | | $y_i^{\dot{D}}$ | Pitching moment due to roll rate divided by Iy, per sec | | $M_{\mathbf{q}}$ | Pitch rate damping divided by Iy, per sec | | Å _{TS} | Commanded rate-of-change of pitch control moment for thumb switch input, (rad/sex2)/sec | | Mug | Longitudinal speed-stability parameter divided by $\mathbf{I}_{\mathbf{y}}$, per \sec^3 | | М _{ба} | Pitching moment due to lateral control stick input, (rad/sec ²)/in. | | $^{ ext{M}}\delta_{ ext{e}}$ | Longitudinal control sensitivity divided by T_y , $(rad/sec^2)/in$. | | $^{ ext{M}} heta$ | Pitch attitude stabilization divided by Iy, per sec2 | |---|--| | $N_{\mathbf{C}}$ | Yaw control moment commanded by pilot and SAS divided by I_z , $\mathrm{rad/sec}^2$ | | N _{c5} | Yaw control-moment level exceeded 5-percent of the time with unlimited moment available divided by I_z , rad/sec ² | | $N_{\mathbf{c}_{\underline{\mathbf{m}}}}$ | Maximum available N_c , rad/sec ² | | $N_{\mathbf{r}}$ | Yaw rate damping divided by Iz, per sec | | $N_{\mathbf{V}}$ | Yaw-due-to-lateral-velocity parameter divided by I_z , rad/(ft-sec) | | $^{ exttt{N}}\!\delta_{ exttt{r}}$ | Yaw control sensitivity divided by I_z , $(rad/sec^2)/in$. | | PR | Pilot opinion rating based on Harper-Cc. er scale | | ΔPR | Degradation in pilot rating | | PLL | Percent time commanded roll moment exceeded installed roll control moment, percent | | P_{ML} | Percent time commanded pitch moment exceeded installed pitch control moment, percent | | P_{NL} | Percent time commanded yaw moment exceeded installed yaw control moment, percent | | P_{SL} | Percent time simultaneous pitch and roll moment commands exceeded the sum of the installed pitch and roll control moments, percent | | P_{TL} | Pe cent time commanded thrust exceeded installed thrust, percent | | QS | Designates entire quick-stop subtask, i.e., motion in both x and y directions | | s | Laplace operator, 1/ser | | SAS | Stability augmentation system | | s_{u_g}, s_{v_g} | Power spectrum of longitudinal and lateral turbulence components, respectively, ft ² /sec | | $^{ ext{t}\ddot{ heta}_{ ext{max}}, ext{t}\ddot{ heta}_{ ext{max}}, ext{ iff}_{ ext{r}}}$ | Time interval following control input for pitch, roll and yaw, respectively, within which MIL-F-83300 (para graph 3.2.4, Ref. 1) stipulates that maximum initial angular acceleration shall occur, 0.3 sec | | | | | |---|--|--|--|--|--| | TS | Thumb-switch thrust-rotation command, 0 or ±1 (+1 is aft) | | | | | | TU | Designates ±180 deg turn subtask | | | | | | T/W | Thrust-to-weight ratio | | | | | | (T/W-1) ₅ | Five-percent incremental T/W usage
level, g's | | | | | | ΔT/W | Increment to thrust-to-weight ratio, g's | | | | | | UL | Notation for effectively unlimited control moment or thrust level | | | | | | U_{m} | Mean wind from the north (000 deg true), 10 kts | | | | | | x | Conventional longitudinal axis notation in the bcdy-axis system, ft | | | | | | MX | Designates x-direction part of the maneuver subtask | | | | | | XQS | Designates x-direction part of the quick-stop subtask | | | | | | x_u | Longitudinal drag parameter divided by m, per sec | | | | | | У | Conventional lateral-axis notation in the body-axis system, ft | | | | | | MX | Designates y-direction part of the maneuver subtask | | | | | | YQS | Designates y-direction part of the quick-stop subtask | | | | | | $\mathbf{Y}_{\mathbf{P_h}}$ | Pilot model transfer function for height control loop | | | | | | $\mathbf{Y}_{\mathbf{P}_{\!\boldsymbol{ heta}}}$ | Pilot model transfer function for pitch control loop | | | | | | $\mathbf{Y}_{\mathbf{P}_{oldsymbol{\psi}}}$ | Pilot model transfer function for yaw control loop | | | | | | $\mathbf{Y}_{\mathbf{v}}$ | Lateral drag parameter divided by m, per sec | | | | | | Z_W | Height velocity damping divided by m, per sec | | | | | | $Z_{w_{2}}, Z_{w_{S}}, Z_{w_{T}}$ | Notation for aerodynamic, stability au mentation system and total Z_{W} , respectively, per sec | |--|---| | $z_{\delta_{\mathbf{c}}}$ | Height control sensitivity divided by m, (ft/sec2)/in. | | γ̈́ | Thrust-vector-rotation rate, deg/sec | | $\gamma_{\!$ | Thrust-vector angle per inch of control input, deg/in. | | $\delta_{ m c}$ | Collective control displacement, in. | | ζ | Damping ratio of oscillatory roots | | ζ_a , ζ_e | Damping ratios of second-order lags in roll and pitch response to control inputs, respectively | | θ | Euler pitch attitude angle, rad | | $\sigma_{ m ug}$ | RMS longitudinal turbulence, ft/sec | | $\sigma_{\!$ | RMS lateral turbulence, ft/sec | | $ au_{\mathrm{a}}, au_{\mathrm{e}}$ | Time constant for first-order lag in roll and pitch control response, respectively, sec | | Th | Time constant for first-order lag in thrust response to collective control input, sec | | <i>7</i> ∆ | Time constant for decay of incremental control power available through stored energy, sec | | $ au_{m{\psi}}$ | Time constant for first-order lag in yaw response to pedal input, sec | | ϕ | Euler roll attitude angle, rad | | ψ | Euler yaw attitude angle, rad | | $\omega_{ t d}$ | Damped frequency of the aircraft attitude (pitch or roll) oscillatory roots, rad/sec | | $\omega_{ m n}$ | Natural frequency of the aircraft attitude (pitch or roll) oscillatory roots, rad/sec | | $\omega_{n_a},\omega_{n_e}$ | Natural frequencies of second-order lag in roll and pitch response to control inputs, respectively, rad/sec | ### SECTION I #### INTRODUCTION A specification for V/STOL aircraft flying qualities, MIL-F-83300, has recently been developed under Air Force sponsorship (Ref. 1). It is based on the results of an extensive evaluation of previous V/STOL flying qualities studies as well as the findings of recent experimental and analytical research funded by the Air Force. Most of the latter was conducted as part of the VTOL Integrated Flight Control System (VIFCS) program. The specification and its supporting documentation provide guidance in the design of V/STOL aircraft control systems as well as a standard for flying qualities. They also are the culmination of research which represents a major advance in the understanding of V/STOL flight characteristics. Additional research is required, however, in the V/STOL hover and lowspeed flight regime. In particular, general information is needed on requirements for installed control power, i.e., control moments and thrustto-weight ratio. Providing appropriate levels of control power for hover and low-speed flight is a critical part of the design of V/STOL aircraft. Despite its importance, there are little general data available which relate flying qualities to installed control power (Refs. 2 through 4). A related factor which has received almost no attention is the incremental control moment or thrust which can be obtained from rotor-propulsion system stored By temporarily converting a part of the rotor-propulsion system angular momentum to control power, it is possible to supplement the anstalled control powers. Other general areas which should be investigated further are control lags and delays and inter-axis motion coupling. Motion coupling in particular has not been given adequate attention. Control and rate coupling, for example, exist to some degree in almost all V/STOL aircraft and their effects can rad to a significant degradation in flying In general, however, the specification treats motion coupling only qualitatively. An uncertainty also exists over the level of height velocity damping, Z_W , needed for satisfactory height control characteristics. MIL-F-83300 indicates that height control will be satisfactory providing that Z_W is not positive, i.e., not destabilizing. Results which support this contention can be found (Ref. 5), but data which indicate a requirement for a significant level of negative Z_W are also available (Refs. 6 and 7). The height control portion of the specification also assumes that a tradeoff exists between the level of height velocity damping present in the aircraft and the required installed thrust-to-weight ratio. Although there are results which support this assumption, it merits further substantiation. Finally, MIL-F-83300 would be more useful if its scope could be extended to encompass some unconventional V/STOL control systems. The specifications may already apply to many aspects of hover and low-speed flight with such systems. However, its limitations in this regard are not known and it would be beneficial to examine V/STOL flying qualities with several unconventional systems that might be used on future aircraft. Examples of these types of systems are rate-command/attitude-hold or "stick steering" control and thrust-vector control independent of aircraft attitude. The study described in this report provides additional information on the hovering and low-speed flying qualities of V/STOL aircraft. The objective of the program was to provide experimental flight simulator data and analyses which will be used to substantiate, refine, and extend the hovering and low-speed flight portion of the V/STOL Flying Qualities Specification. ### SECTION II #### BACKGROUND OF EXPERIMENTAL PROGRAM This section contains a description of the studies conducted using the UAC V/STOL Flight Simulator and a discussion of the equipment and procedures used in the experimental program. Most of the equipment and many of the procedures used for the experimental studies were similar to those described in Refs. 7 and 8. Also, the flight simulation for this study was designed to correspond as closely as possible to that implemented at Norair for their previous VIFCS study (Ref. 9). Table A-I is a summary of parameters for cases evaluated and a key to tables in Appendices A, B, C and D that are tabulations of all the data discussed in Sections III through V. Additional details of the flight simulation are contained in Appendix F. ### A. Flight Simulator Studies The experimental program was designed to provide data to substantiate, refine and extend the hovering and low-speed flight portion of the V/STOL Flying Qualities Specification. It included studies of longitudinal and lateral flying qualities, height control and directional control. Emphasis was placed on obtaining information related to requirements for installed control power. The data obtained generally consisted of pilot opinion ratings, pilot-selected control sensitivities and measured control moment and/or thrust usage. ### 1. Longitudinal and Lateral Control There were seven different investigations conducted in this part of the program. They were concerned with the effects of (1) turbulence intensity, (2) lags and delays in the response to control inputs, (3) limits on the available control moments, (4) incremental pitch control moment through stored energy, (5) inter-axis motion coupling, (6) thrust-vector control independent of aircraft attitude, and (7) rate-command/attitude-hold control. Six basic V/STOL configurations were selected. A range of values of the parameter being considered was then evaluated for each basic configuration. Also, longitudinal and lateral control were generally evaluated together; only one pilot opinion rating was given for a test case, and this represented the pilot's assessment of the combined longitudinal and lateral flying qualities. In addition, control moments were effectively "unlimited" and pitch, roll and yaw artrol-moment usage was measured for each study, unless noted otherwise. ### a. Pasic Configurations The six basic configurations had conventional rate and attitude stability augmentation, and each was similar to configurations evaluated in the previous Norair and UARL studies (Refs. 7 through 9). They also were symmetrical in that each lateral stability derivative had the same value as the corresponding longitudinal derivative. The directional and vertical stability derivatives were the same for all six configurations. Table I lists their stability derivatives and root locations; roots are also plotted in Fig. 1. It is apparent that the basic configurations span a wide range of dynamic response characteristics. They encompass all three of the levels (1, 2 and 3)* used to characterize aircraft flying qualities in MIL-F-83300, in addition to exhibiting a range of
responses to turbulence. TABLE I STABILITY DERIVATIVES AND ROOT LOCATIONS FOR UARL BASIC CONFIGURATIONS | Conf. | Level | Stability Derivatives 1,2 | | | | Root Locations | | |--------|-------|---------------------------|----------------|----------------|-------------------|----------------|--| | COIII. | телет | M _u g | x _u | М _q | $^{ ext{M}} heta$ | Real
Root | -ζ $\omega_{ m n}$ ± j $\omega_{ m d}$ | | BCl | 1 | 0.33 | -0.05 | -1.7 | -4.2 | -0.13 | -0.81.± j 1.85 | | BC2 | 2 | 1.0 | -0.05 | -1.1 | -2.5 | -0.5 | -0.30 ± j 1.47 | | всз | 3 | 1.0 | -0.05 | -2.0 | 0 | -2.2 | 0.08 ± j 0.68 | | BC4 | 1 | 1.0 | -0.20 | -3.0 | -1.7 | -2.5 | -0.35 ± j 0.64 | | BC5 | 1 | 0.33 | -0.20 | -1.7 | -4.2 | -0.29 | -0.81 ± j 1.85 | | вс6 | 2 | 1.0 | -0.20 | -1.1 | -2.5 | -0.65 | $-0.32 \pm j 1.48$ | - 1. Symmetrical configurations lateral derivative has same value as corresponding longitudinal derivatives. - 2. Directional derivatives for all configurations: $N_V = 0.002$, $N_r = -1$, $N_{\delta r} = 0.20$; Vertical derivatives: $Z_W = -1$, $Z_{\delta c} = -3.2$, T/W > 1.15. ^{*}Level 1 flying qualities are "clearly adequate for the mission"; Level 3 are such that the "aircraft can be controlled safely but pilot workload is excessive or mission effectiveness is inadequate, or both"; and Level 2 flying qualities lie between these extremes. Configurations BCl, BC4 and BC5 are Level 1, but BC4 exhibits a larger attitude response to turbulence ($M_{u}g = -L_{v}g = 1.0$) than BCl and BC5 ($M_{u}g = -L_{v}g = 0.33$). Also, BC4 and BC5 have greater position responses to turbulence than BCl ($X_{u} = Y_{v} = -0.20$ versus $X_{u} = Y_{v} = -0.05$). Configurations BC2 and BC6 are Level 2 with large speed-stability parameters. This feature, combined with the lower levels of damping, results in significant attitude disturbances due to gusts. Configuration BC6 also has the large drag parameters and the attendant large position responses to turbulence. Finally, configuration BC3 is Level 3 with lightly damped dynamics, large speed-stability parameters ($M_{u}g = -L_{v}g = 1.0$), and large attitude disturbances from turbulence. It is important to note also that all of the rate damping and attitude stabilization represented by these derivatives in Table I (i.e., M_{q} , M_{θ} and their lateral, vertical and directional counterparts) was assumed to be provided by a stability augmentation system (SAS). ### b. Turbulence Intensity This study was conducted to provide information on the sensitivity of aircraft with different level flying qualities to changes in turbulence intensity and to obtain control-moment usage data. The flying qualities of Level 1 aircraft should be somewhat insensitive to gust level. That is, the MIL-F-83300 definition for V/STOL Level 1 dynamic response must be formulated such that flying qualities remain acceptable for commonly encountered turbulence intensities. Greater deterioration in flying qualities would be expected for Level 2 and 3 aircraft. Each of the six basic configurations was evaluated at three levels of rms longitudinal and lateral turbulence intensity, $\sigma_{\rm ug} = \sigma_{\rm vg} = 3.4$, 5.8 and 8.2 ft/sec. The wind simulation also included a mean wind $\rm U_m = 10~kt~(\approx 17~ft/sec)$ from the north. Note that only for this study were rms turbulence intensities other than $\sigma_{\rm ug} = \sigma_{\rm vg} = 3.4$ ft/sec evaluated. For the rest of the program the wind simulation consisted of $\sigma_{\rm ug} = \sigma_{\rm vg} = 3.4$ ft/sec and $\rm U_m = 10~kt$. Details of the wind simulation are described in Section II.B.1. ### c. Lags and Delays in Attitude Response to Control Inputs Pitch and roll control lags and delays were evaluated to test the adequacy of the MIL-F-83300 specification for such effects (paragraph 3.2.4, Ref. 1). These lags and delays only operated on the pilot's control stick inputs, i.e., the stability augmentation system (SAS) commands were not affected. The location of the lags and delays in the pitch attitude control loop is shown schematically in Sketch II-A. The implementation was identical for the roll loop. In the specification pitch, roll or yaw lags and delays are presumed to be within acceptable limits if the time to reach the initial maximum angular acceleration is no greater than 0.3 sec. To span this requirement with both acceptable and unacceptable values, first-order lags having time constants of 0.1, 0.3 and 0.6 sec were evaluated for each basic configuration. Also, the longitudinal and lateral lags were always SKETCH II-A. Location of Lags and/or Delays Simulated in Pitch Response to Control Inputs equal $(\tau_e = \tau_a)$ for a given test case. In addition, pitch and roll moment delays, $d_e = d_a$, of 0.1 sec were evaluated with and without a combined first-order lag of $\tau_e = \tau_a = 0.3$ sec. Configurations BCl and BC2 were used for these test cases. The effects of second-order control lags were also investigated with configuration BCl to further test the specification. The significance of amplitude versus phase effects was examined by varying the damping ratio and natural frequency of the second-order lags. ### d. Limits on Available Control Moments The purpose of the control-moment-limit study was to investigate the effects of aircraft configuration and control system parameters on the total control moments (i.e., moments commanded by the pilot and the rate damping and attitude stabilization derivatives or SAS) necessary for pilot acceptance. Another objective was to examine whether these required installed control moments correlate with the control moment levels exceeded some given small percent of the time with unlimited moment available, e.g., the 5-percent level. Information on the adequacy of the MIL-F-83300 specification for pitch, roll and yaw control power (paragraph 3.2.3.1) was also provided by comparing it with the results of this study. Configurations BCl, BC4, BC5 and BC6 were considered initially without control lags or delays. Three to five levels of available total control moment were evaluated for each configuration, and pilot opinion ratings were used to indicate the sufficiency of the levels. Pilots were not aware of the control-moment limits except as they affected flying qualities. The moment limits were applied on an analog computer, not to the physical control stick motion and the maximum control travels available were such that the limits would always be exceeded if the maximum travels were used. The control moment versus moment command characteristics simulated in the moment limit study for pitch, roll and yaw control are shown in Sketch II-B. Note that the moments available in the pitch, roll or yaw axes were never identical. The reference limits or starting points for the installed controlmoment levels (pitch, roll and yaw) were averages of those levels exceeded percent of the time (CM5) with unlimited moment available. The limits for the remaining test cases were developed by increasing (or decreasing) the reference levels by integral multiples of 10 percent. SKETCH II.B. Pitch, Roll or Yaw Control Moment Versus Total Control-Moment Command Characteristics for the Moment Limit Study The effects of control-moment limits were next evaluated with control system lags and delays present. Configurations BCl and BC5 were used with pitch and roll response delays of $d_e = d_a = 0.1$ sec in combination with first-order lags of either $\tau_e = \tau_a = 0.3$ sec or 0.6 sec. The moment limits evaluated and the procedures for this investigation were unchanged from those for no control lags or delays. ### e. Control Moments Through Stored Energy Several types of V/STOL aircraft derive pitch and roll control moments from cyclic and/or collective changes of rotor system blade angles. Momentary incremental control moments above the installed moment levels can be obtained for such systems by abruptly increasing blade angles to values larger than the normal operating limit. Of course, the aircraft's power-plant will be unable to maintain engine rpm at this large blade angle, and rpm will decay. However, the brief increase in moment may be sufficient to compensate for deficiencies in the installed control moments. This study was undertaken to examine whether the stored energy in typical V/STOL rotor-propulsion systems could be used to such advantage. Freliminary analyses indicate that it may be possible to approximate the control moments available from stored energy, CMSE, by $$\frac{d(\mathbf{rpm})}{dt} + c_1 (\mathbf{rpm})^2 = c_2$$ $$cM_{SE} = c_3 (\mathbf{rpm})^2$$ (1) where coefficient C_1 is related to the blade drag, C_2 to the available engine horsepower, and C_3 to the blade lift coefficient. Also, coefficients C_1 and C_3 both change when the pilot moves his control stick. For this study, stored energy effects were simulated for pitch control moments only and a linearized version of Eq. (1) was used to represent stored energy (Eq. (2)). $$\tau_{\Delta} = \frac{d}{dt} (CM_{SE}) + CM_{SE} = \tau_{\Delta} = \frac{d}{dt} (|Commanded Moment| - M_{c_m})$$ (2) In Eq. (2) the parameter au_{Δ} is the time constant associated with the stored energy decay and Mcm is the steady-state or installed control moment. Also, the maximum control moment increment available from stored energy is defined as $\Delta M_{\rm c}$ and the function (|Commanded Moment| - $M_{\rm c_m}$) in Eq. (2) cannot be larger than $\Delta M_{\rm c}$. In addition, the stored energy increment was available for both positive and negative control commands as indicated in Eq. (2). pitch control-moment step response for the stored energy study is shown in Sketch II-C. The moment response shown there is similar to the maximum pitch control moment the pilot and/or SAS could command if a large, rapid control input was made and sustained. The total moment available, then, consisted of a
continuously available installed moment, $M_{\mathbf{c}_{\mathrm{m}}}$, plus a transient term which was excited if the magnitude of the total command exceeded Mcm. transient gave an abrupt increase related to the | Commanded Moment | - M_{Cm} (up to the maximum increment of $\Delta M_{ m C}$) that decayed with time constant $au_{ m A}$. $M_{\rm Cm}$ and $\Delta M_{\rm C}$ are considered to be positive functions in this discussion. increment from stored energy could be used at any time, but after it decayed the pilot (and/or SAS) had to reduce the commanded moment and wait until the stored energy simulation recovered (the recovery time constant was also au_{λ}). This effectively simulated the time it would take a propulsion system to restore rotor rpm. A logic diagram illustrating the stored-energy simulation is shown in Sketch II-D. Representative values for the increment and the rpm decay (and recovery) time were determined from an analysis of the XC-142 SKETCH II-C. Step-Response Characteristics of the Simulation of Incremental Control Moment Available Through Stored Energy SKELCH IT D. Schematic Showing Switching Logic for Stored Energy Simulation propulsion system. It appears that a moment increment of 30 percent of the installed moment is possible with associated decay time constants of τ_{d} = 0.05 and 0.10 sec. Values for τ_{Δ} of as much as 0.2 sec may be possible for helicopters because of the greater rotor-system inertia. The effects on flying qualities of pitching moment available through stored energy were investigated with the same basic configurations considered in the control-moment limit study, i.e., BCl, BC4, BC5 and BC6. The installed pitch control moment, $M_{\rm Cm}$, for each configuration was set at a low level which yielded unsatisfactory pilot ratings without stored energy effects. All other installed control moments were set at satisfactory levels. The effects of the incremental pitch control moments supplied by stored energy were then evaluated for different combinations of $\Delta M_{\rm c}$ and $\tau_{\rm A}$. Pilot ratings were used to assess the effects of stored energy. As for the study of control-moment limits, the pilots were not aware of the limits on pitch control power except through aircraft flying qualities. Control-moment data were not measured during the stored energy investigation. ### f. Inter-Axis Motion Coupling This study was performed to determine acceptable values of attitude rate coupling (M_p and L_q) and control coupling ($M_{\delta a}$ and $L_{\delta e}$). An analysis was conducted initially to determine appropriate polarities and magnitudes for these parameters. The sign convention used for the attitude rate coupling (M_p positive and L_q negative) was derived from a simple analysis of hingeless-rotor aerodynamics. When the rotor tip-path-plane shown in Sketch II-E SKETCH II-E. Top View of Rotor Tip Path Plane undergoes pitch rates, one effect gives rise to net rolling moments. For example, if pitch attitude is increased by a positive pitch rate, the angle of attack of a blade in arc DAB will also increase, while that in arc BCD will decrease, causing a negative rolling moment (I_q negative). Similarly, a positive roll rate (increase in roll attitude) results in a positive pitching moment (M_p positive). Data in Ref. 10 indicate that rate coupling levels ranging from M_p = 0.3, I_q = -2.7 to M_p = 1.5, I_q = -14 can be present in uncompensated helicopter control systems, depending on rotor design. The sign convention for control coupling can also be interpreted by reference to Sketch II-E. The maximum control moment for an articulated (hinged) rotor occurs when the blade has moved an additional 90 deg after a blade-angle (cyclic) change, i.e., the maximum pitching moment occurs at point B if the blade angle is changed at A. For a hingeless rotor the maximum moment occurs after a smaller phase lag, e.g., somewhere in the arc AB for a blade angle change at A. Therefore, a positive pitch control input gives rise to a negative roll moment ($L_{\delta e} < 0$) and a positive roll control command results in a positive pitch moment ($M_{\delta a} > 0$). It should be noted that, with the sign conventions described, the effects of attitude rate and control coupling are additive. For example, a positive pitch control input yields a positive pitch rate and, since both L_q and $L_{\delta e}$ are negative, the induced rolling moments from both sources are negative. However, in the flight simulator evaluation of coupling effects, coefficients having signs which resulted in cancelling moments ($L_q < 0$, $L_{\delta e} > 0$ and $M_p > 0$, $M_{\delta a} < 0$) were also evaluated. Configurations BCl and BC2 were considered in this study with rate coupling levels of $M_{\rm p}$ = $-L_{\rm q}$ = 2 and 4 and control coupling up to $M_{\rm \delta e}/L_{\rm \delta e}$ = $L_{\rm \delta e}/M_{\rm \delta e}$ = 0.50. The different types of coupling were evaluated separately and in combination. ### g. Thrust-Vector Control Independent of Aircraft Attitude Independent thrust-vector control (TTVC) enables the pilot to maneuver aircraft having large drag parameters without large attitude changes. Also, with ITVC, large aircraft can be maneuvered near the ground with a reduced probability of tail strikes (and wing strikes, if lateral ITVC is also available). Only longitudinal ITVC was investigated in this study and it was implemented in two ways. In the first approach the longitudinal thrust vector was rotated using a thumb switch which commanded a constant rate of rotation. Pitch attitude was controlled using the conventional control stick. This technique for thrust-vector control was identical to the implementation of the wing tilt (or thrust-vector) control which was used by the evaluation pilots to trim the effects of mean wind acting through the longitudinal drag The wing tilt capability was available for all test cases evaluated in the UARL study. However, only for the ITVC study was the pilot permitted to use this device for general position control. The second method of implementation involved proportional control of the thrust-vector angle using the control stick while pitch attitude was controlled with the thumb switch. The thumb switch commanded a fixed rate-of-change of pitching In general, the thrust-vector angle was displayed on the contact analog display with a symbol that moved vertically. Thrust-vector angle was also displayed on the instrument panel. For some of the experiments only the instrument panel display was used. Two Level 1 configurations (BCl and BC4) and a Level 2 configuration (BC2) were used in the ITVC study. These configurations provide a range of position response characteristics with which to test ITVC. Configurations BCl and BC2 have low drag parameters $(X_u = Y_v = -0.05)$ and, consequently, low position stability and low position response to turbulence. Configuration BC4 has large drag parameters which give it greater position stability but also larger gust-induced position disturbances. Attitude control moments were unlimited for this study and the thrust-vector angle could be rotated through ±90 deg. Pitch and roll control-moment usage and thrust-vector angle were measured in the ITVC study. ### h. Rate-Command/Attitude-Hold Control The rate-command/attitude-hold or "stick steering" control system has two significant attributes. First, it will hold trim attitudes while allowing the pilot to center the stick and, second, it provides a rate-command control response for higher frequency control motions. A representative attitude transfer function (pitch) for such a system is given by Eq. (3): $$\frac{\theta}{\delta_{e}}(s) = \frac{{}^{M}\delta_{e}}{s(s^{2} + 2\zeta\omega_{n}s + \omega_{n}^{2})}$$ (3) This transfer function can be obtained for a rate and attitude stabilized V/STOL aircraft by integrating the control stick input to the attitude control system. This is the feature which enables the pilot to hold trim attitude with no steady-state control input. The attitude stabilization must then be increased to values which drive the real root of the attitude dynamics, i.e., the real root of the hovering cubic, towards zero, where it will be cancelled by the first-order zero related to drag parameter. If the natural frequency of the quadratic term in Eq. (3) is then sufficiently large, the transfer function $\theta/\delta_{\rm e}$ at and below the pilot's crossover frequency ($\omega_{\rm c}\approx 2.5$ to 3.5 rad/sec, Ref. 8) will effectively be $$\frac{\theta}{\delta_{e}}(s) \approx M_{\delta_{e}}/s$$ (4) However, the dynamics still retain the attitude stabilization features. The lead compensation that must be supplied by the pilot for pitch and roll control and, consequently, the longitudinal flying qualities of this control system, are very dependent on the damping ratio, ζ , and natural frequency, ω_n , of the quadratic in Eq. (3). The rate-command/attitude-hold control system for pitch attitude (and also roll) was implemented as shown in Sketch II-F for this study. For this study the basic longitudinal and lateral airframe derivatives of configurations BCl and BC4 were used as a base and the rate damping (Mq, Ip) and attitude stabilization (Mg, Ip) parameters were varied to provide a broad range of ζ and ω_n for the pitch and roll dynamics. The initial parameters chosen were based on a closed-loop analysis of the pilot-aircraft dynamics. Values for ζ and ω_n that could not be obtained with simple SKETCH II-F. Implementation of Rate-Command/Attitude-Hold Control attitude and rate feedbacks were not evaluated in this study. Again, the pitch and roll attitude dynamics were identical for each test case. ### 2. Height Control The height control program consisted of four studies. They were concerned with the effects on flying qualities of (1)
height velocity damping, $Z_{\rm W}$, with effectively unlimited thrust, (2) the interaction between $Z_{\rm W}$ and the installed thrust level, (3) thrust lags and delays, and (4) thrust available through stored energy. The longitudinal, lateral and directional characteristics were defined by the basic configurations and are shown in Table A-I. Pitch, roll and yaw control moments were effectively unlimited. The data obtained consisted of pilot ratings, pilot-selected collective control sensitivities and thrust usage. The measured thrust usage was made up of that which the pilot attempted to command, $Z_{\delta_{\rm C}}$, and that actually commanded, $Z_{\delta_{\rm C}}$, $Z_{\rm W}$, where $Z_{\rm W}$ is the height damping resulting from stability augmentation. ### a. Effects of Height Velocity Damping with Unlimited Thrust This study was undertaken primarily to provide more information on the minimum acceptable level of height velocity damping, Z_{W^*} . The MIL-F-83300 specification (paragraph 3.2.5.4) assumes that Level 1 flying qualities for height control can exist for $Z_W=0$ provided sufficient thrust is available (T/W>1.10). A previous UARL study (Ref. 7) contains data which indicate that a level of $Z_W\approx$ -0.5 is necessary for satisfactory height control. A secondary objective of the study was to measure thrust usage data with effectively unlimited thrust-to-weight ratio (T/W>1.15). Levels of total height damping, Z_{WT} , ranging from 0 to -0.8 were evaluated with configurations BCl and BC4. The total damping was assumed to consist of equal aerodynamic, Z_{Wa} , and stability augmentation system (SAS), Z_{Ws} , components. ### b. Interaction Between Zu and Installed Thrust Level The height control power portion of MIL-F-83300 (paragraph 3.2.5.1) is based on the premise that increased height velocity damping reduces the necessary installed thrust. The study described here was conducted to provide more information on this effect. Height control was evaluated with configuration BCl for six or more levels of $Z_{\rm WT}$, ranging from -0.1 to -0.5, at each of three installed thrust-to-weight ratios (T/W = 1.02, 1.05, 1.10). The T/W ratios considered are pertinent to the definition of level boundaries for the height control power specification. Generally $Z_{\rm WT}$ was composed of equal parts of aerodynamic, $Z_{\rm Wa}$, and SAS, $Z_{\rm WS}$, damping. However, the effects of all $Z_{\rm Wa}$ or all $Z_{\rm WS}$ were also investigated. ### c. Thrust Lags and Delays This investigation was designed to test the specification for thrust magnitude control lags (paragraph 3.2.5.2). First-order lags which result in height control response that spans the Level 1 and 2 requirements (τ_h = 0.3 and 0.6) were evaluated with and without 0.1-sec delays. These lags and delays affected both the control and SAS thrust commands. Configuration BC1 was used and several values of Z_{WT} , composed of equal Z_{Wa} and Z_{Ws} components, were simulated for each combination of control lag and delay. Also, the installed T/W was limited to 1.05 for this study. ### d. Thrust Available Through Stored Energy The effects of incremental thrust from rotor-propulsion system stored energy were investigated using configuration BCl with height control characteristics that were unsatisfactory without stored energy ($Z_{\rm WT} = Z_{\rm W_S} = -0.35$, T/W = 1.02). Two levels of incremental T/W representing momentary thrust increases of approximately 15 percent and 30 percent, i.e., $\Delta T/W = 0.13$ and 0.28, were evaluated with decay time constants of $\tau_{\Delta} = 0.05$, 0.1 and 0.2 sec. Stored energy was simulated as described for pitch control in Section II.A.l.e. ### 3. Directional Control THE REPORT OF THE PROPERTY three directional control studies investigated (1) the effects of damping on flying qualities and control-moment usage, (2) control lags and delays, and (3) limits on the available control moment. Two of the basic configurations (BCl and BC2) were used to represent V/STOL longitudinal and lateral control characteristics. The height-control parameters for the directional studies were as shown in Table A-I. Pitch and roll control moments and thrust-to-weight ratio were effectively unlimited. Yaw control moments were also unlimited unless noted otherwise. Pilot ratings, pilot-selected directional control sensitivities and pitch, roll and yaw control-moment usage were recorded. ### a. Effects of Yaw Rate Damping This study was conducted to provide additional information on the relationship between yaw rate damping and flying qualities and to obtain control-moment-usage data. Yaw rate damping values which spanned the Level 1, 2 and 3 specifications (paragraph 3.2.2.2), for directional damping ($N_r = -1$, -0.5 and 0, respectively) were evaluated for basic configurations BCl and BC2. For all test cases N_v was 0.005. ### b. Control Lags and Delays The effects of directional control lags and delays were also investigated to provide results with which to test the control-lag specification (paragraph 3.2.4). First-order control lags (which affected the pedal response only) with time constants $\tau_{\psi}=0.3$ and 0.6 were evaluated with and without 0.1-sec delays in control response. These lag and delay combinations were each evaluated at N₁, levels of -0.5 and -1. Only configuration BCl was used in this study and N_V remained 0,005. ### c. Yaw Control-Moment Limits The levels of yaw control moment necessary for satisfactory directional control were determined (1) to provide comparative results for the MIL-F-83300 control power requirement (paragraph 3.2.3.1) and (2) to evaluate the hypothesis that acceptable moment limits correlate with a level exceeded some small percent of the time for unlimited available moments. Configuration BCl was again used in this study and $N_{\rm V}$ remained 0.005. The yaw control-moment limits considered were $N_{\rm Cm}=0.10$, 0.13 and 0.16 and the effects of these limits were evaluated for two values of $N_{\rm r}$, -0.5 and -1.0. The smallest limit considered, $N_{\rm Cm}=0.10$, was based on yaw concrol-moment data measured in the turbulence study (Section II.A.1.b). It was the average level exceeded 5 percent of the time for the 3.4 ft/sec rms turbulence intensity. ### B. Description of Simulation ### 1. Simulation of V/STOL Aircraft and Winds The six-degree-of-freedom equations of motion for hovering and low-speed flight were programmed on an analog computer. They were written using a body-axis coordinate system and were linearized assuming small perturbations from hovering flight (Eq. (F-1), Appendix F; Refs. 7 and 8). Also, the angular momentum effects of such spinning masses as propellers and jet engine rotors were not considered. Products of inertia have also been assumed to be negligible and, with the exception of $N_{\rm V}$, derivatives which couple motion between axes were generally disregarded. Pitch and roll rate coupling and control coupling were examined in one of the longitudinal and lateral control studies, however. The wind simulation consister of a 10 kt (≈ 17 ft/sec) mean wind from the north (000 deg true), $U_{\rm m}$, and turbulence which was introduced along the aircraft x and y body axes. Turbulence was simulated by passing the output of a random noise generator, which had a relatively uniform low-frequency power spectral distribution, through a first-order filter with a break frequency of 0.314 rad/sec (Refs. 7 and 8). The simulated turbulence then excited aircraft rotational and translational motion through the aircraft speed-stability and drag parameters and the yaw-due-to-lateral-velocity parameter (see Eq. (F-1), Appendix F). The turbulence intensity was always equal in the x and y axes, and, in general, an rms level of $\sigma_{\rm ug} = \sigma_{\rm vg} = 3.4$ ft/sec was used. With this turbulence intensity, the wind simulation as the same as that used for much of the previous Norair study conducted under the VIFCS program (Ref. 9). Turbulence intensity levels of $\sigma_{\rm ug} = \sigma_{\rm vg} = 5.8$ and 8.2 ft/sec were also considered in the study of turbulence effects. ### 2. Flight Simulation and Display Fixed- and moving-base VFR flight simulations were used. For any given study, the moving-base simulations were used to check selected fixed-base data which had been previously obtained. Generally, about half the test cases in a particular study were evaluated in the moving-base mode. The same flight simulator used in the previous UARL VIFCS studies (Refs. 7 and 8) was also used for this program. A motion platform has been added to the device, however (Fig. 2). The simulator consists of a fully enclosed, two-place Sikorsky S-61 cockpit with a conventional instrument panel, a contact analog display for VFR flight simulation, and the six-degree-of-freedom motion platform. control system for this simulation was made up of standard helicopter flight controls plus a thumb-switch device which could be used to change the longitudinal thrust-vector angle (or wing-tilt angle) and thereby trim the effects of the mean wind acting through the longitudinal drag parameter. The display (Fig. 3) is composed of a ground grid, horizon line, clouded sky and display symbols. Attitude and coarse position information are obtained from the motion of the ground grid, horizon and sky relative to a cross symbol which represents the nose of the aircraft. The cross may either be the electronic symbol shown in Fig. 3 or simply a marker physically attached to the screen surface. For the independent thrust-vector control and height control studies, the latter method was used and the electronic cross was moved to the right side of the screen to indicate thrust-vector angle and altitude, respectively. Precise aircraft position and velocity information are obtained from the motion of the square symbol which indicates a spot on the
ground. At the reference hovering altitude of 40 ft, the dimensions of the contact ralog screen represented a hover pad approximately 130 ft (longitudinally) by 150 ft and the square symbol an area about 9 ft on a side. Simulator motion is provided by coordinated movement of the six hydraulic actuators on which the cockpit is mounted (Fig. 2). The stroke position of each actuator, commanded in response to the simulation equations of motion, is generally computed using hard-wired analog circuitry. A PDP-8 digital computer is used to set control modes of the motion platform and to monitor system performance. The simulator motion capabilities are summarized in Table II. The amplitude of the motion-platform frequency response is flat to beyond 1 Hz for each type of angular (e.g., pitch, roll or yaw) or linear motion. The phase lag for each type of motion is approximately 30 deg at 1 Hz. TABLE II FLIGHT SIMULATOR ANGULAR AND LINEAR MOTION LIMITS | | An | gular Moti | on | | Linear Motion | | | | |-------|-----------------------|------------------|--|--------------|----------------------|--------------------------|---------------------------|--| | Axis | Atti-
tude,
deg | Rate,
rad/sec | Acceler-
ation,
rad/sec ² | Axis | Posi-
tion,
ft | Velo-
city,
ft/sec | Acceler-
ation,
g's | | | Pitch | ±45 | ±l | ± 1 | Longitudinal | ± 5 | ±6 | ±0.5 | | | Roll | ±30 | ±1 | ±1 | Lateral | ±5 | ±6 | ±0 . 5 | | | Yaw | ±45 | ± <u>1</u> | ±l | Vertical | ±2.5 | ±6 | ±1.0 | | The platform's motion limits are too small to permit duplication of all low-frequency aircraft motion commanded by the pilot, especially the linear displacements. Consequently, a "washout" logic has been developed to selectively attenuate motion commands which would cause the simulator to exceed its limits (Appendix F; Ref. 11). This system is based on measured frequency response characteristics of the human's vestibular system. It also orients the cockpit relative to the earth's gravity field to simulate low-frequency aircraft linear accelerations which otherwise could not be represented. Several pilots have evaluated the motion system with this washout logic for hovering and low-speed flight and have generally found that it provides a realistic representation of actual flight. ### 3. Simulated Flight Task The flight task performed during the longitudinal and lateral and the directional control studies consisted of the following subtasks: vertical takeoff and climb to a 40-ft hovering altitude, low-speed maneuvers (air taxi; MAN, XM, YM), quick stops (QS, XQS, YQS), turns-over-a-spot (TU), hover (HCV), and landing. The air-taxi maneuvers were conducted in both longitudinal and lateral directions through simulated distances of ±65 ft and ±75 ft, respectively. The pilots followed a cross pattern while holding heading constant (at 000 deg true) and hovered momentarily at the cardinal points of the cross. Airspeeds were generally less than 20 ft/sec during the maneuver task. The pilots next performed the longitudinal and lateral quick stops while also holding heading at 000 deg true. Airspeeds were somewhat larger for the quick stops, and, of course, the aircraft's velocities were arrested more abruptly than for the air-taxi maneuvers. The pilots next performed ±180 deg turns while maintaining hover position and this was followed by a 60-sec precision hover at the center of the simulated hover pad. The pilots then landed the aircraft. The turn-over-a-spot subtask was deleted for the height control study and a landing sequence (IS) subtask was performed after the hover. The landing sequence consisted of relatively rapid changes in hovering altitude from 40 ft to 20 ft and back to 40 ft. This was followed by a vertical landing. ### 4. Pilots The two UARL evaluation pilots were the same pilots A and B who participated in the previous VIFCS studies conducted at UARL (Refs. 7 and 8). Both are licensed private pilots who have flown a variety of fixed-wing aircraft and one has had limited helicopter experience. They also have each accumulated several hundred hours evaluation time on the flight simulator. For each study in this program pilot B generally evaluated all the fixed-base test cases and pilot A approximately half of them. These ratios were reversed for the height control studies, however. Only pilot B performed moving-base evaluations. Two Calspan test pilots also participated at different times in the UARL program. Each has extensive experience in both helicopters and V/STOL aircraft. Eleven moving-base simulator shifts of at least 4 hours duration each were set aside for Calspan use. Results from the Calspan evaluations are shown only for Calspan pilot B in this report. ### 5. Comparative Results from UARL and Norair Simulations The UARL flight simulation was designed to correspond with that used by Norair in their previous VIFCS program (Ref. 9) and thereby provide comparable results. An indication of the success of this effort can be obtained by comparing pilot ratings for similar test cases from the two simulations. Comparable longitudinal and lateral control rating data for the six UARL basic configurations are shown in Fig. 4 and Table III. The UARL fixed-base TABLE III COMPARISON OF PILOT RATINGS FROM NORAIR AND CURRENT UARL STUDY Wind Simulation: $U_{\rm m}$ = 10 kts, $\sigma_{\rm u_g}$ = $\sigma_{\rm v_g}$ = 3.4 ft/sec for Both Simulations | Basic | 1 1 | | | | ives | Stabi | Later
lity De | | ves | PR | | |-------|---------------|------|-------|------|----------------------|------------------|------------------|---------------------------|--------------------|------|-----| | Conf. | Case | Mug | Xu | Мq | $^{ ext{M}}_{ heta}$ | Ļ _v g | Yv | $\mathbf{I}_{\mathbf{p}}$ | $^{ ext{L}}\!\phi$ | FB | МΒ | | BCl | UARL
Tl | 0.33 | -0.05 | -1.7 | -4.2 | -0.33 | -0.05 | -1.7 | -4.2 | 2 | 2 | | | norair
308 | 0.33 | -0.05 | -1.7 | -4.2 | -0.33 | -0.05 | -1.7 | -4.2 | | 3.2 | | BC2 | UARL
T10 | 1.0 | -0.05 | -1.1 | -2.5 | -1.0 | -0.05 | -1.1 | -2.5 | 4.5 | 5 | | | NORAIR
102 | 1.0 | -0.05 | -1.1 | -2.5 | -0.16 | -0.10 | -5.0 | 0 | | 4.5 | | BC3 | UARL
T16 | 1.0 | -0.05 | -2.0 | 0 | -1.0 | -0.05 | -2.0 | 0 | 5 | 6 | | | NORAIR
117 | 1.0 | -0.05 | -2.0 | 0 | -0.16 | -0.10 | -5.0 | 0 | | 5 | | BC4 | UARL
T7 | 1.0 | -0.20 | -3.0 | -1.7 | -1.0 | -0.20 | -3.0 | -1.7 | 3.5 | 3 | | | NORAIR
147 | 1.0 | -0.20 | -3.0 | -1.7 | -0.16 | -0.10 | -5.0 | 0 | | 4 | | BC5 | UARL
T4 | 0.33 | -0.20 | -1.7 | -4.2 | -0.33 | -0.20 | -1.7 | -4.2 | 3.5 | 2 | | | norair
334 | 0.33 | -0.20 | -2.1 | -3.8 | -0.33 | -0.20 | -2.1 | -3.8 | | 3 | | вс6 | UARL
T13 | 1.0 | -0.20 | -1.1 | -2.5 | -1.0 | -0.20 | -1.1 | -2.5 | 4.75 | 6 | | 1000 | NORAIR
141 | 1.0 | -0.20 | -1.4 | -1.7 | -0.16 | -0.10 | -5.0 | 0 | | 6.2 | data are averaged over two pilots and the moving-base results are for pilot B only. The Norair ratings for each case have been averaged over several pilots. In general, the ratings from the two programs agree relatively well, generally differing by only about one unit or less. Note, however, that only for configuration BCl were the Norair and UARL test cases completely identical. The comparable longitudinal stability derivatives were always quite similar but the lateral derivatives were generally not. ### C. Data Analysis ### 1. Reduction of Experimental Data ### a. Flying Qualities Results Pilot ratings and comments were obtained for each test case. Corresponding pilot-selected control sensitivities were also recorded. For some of the test cases, however, control sensitivities were preset at acceptable levels to save time. The pilot ratings were based on the Cooper-Harper scale (Table IV) and the pilots comments consisted of responses to the appropriate parts of the questionnaire shown in Table V. The rating scale and questionnaire are very similar to those used in the Norair VIFCS program (Ref. 9). For presentation in the figures the UARL fixed-base rating data and control sensitivity results were each averaged over pilots A and B. The corresponding moving-base data from pilot B are shown separately. Also, Calspan pilot evaluation results were never averaged with the UARL data. Except for height and directional control, the Calspan pilots did not reach the level of control proficiency on the UAC simulator which is necessary to provide valid flying qualities data. This should not be interpreted as a reflection on the capabilities of the Calspan evaluation pilots who were both highly skilled in the control of V/STOL aircraft. Rather, the inability to become proficient, in the somewhat limited time available for Calspan pilot training, was a result of the complex nature of the UAC contact analog display (Fig. 3). This display does not provide a great deal of visual realism and in order to control properly one must rely on the relative motion between the cross and square symbols. The Calspan pilots did not learn to "lead" their control inputs properly using this relative motion information. They also tended to make control inputs of the wrong polarity, because it was difficult for them to determine the proper correlation between the symbol relative motion and the required control input. Valid flying qualities data can be obtained with the UAC display, however, for evaluation pilots who are familiar with its characteristics (e.g., Refs. 7, 8, and 12). For such pilots, the UAC display can provide visual cues (except for peripheral information) which are similar to those in actual VFR flight, and in some aspects possibly better than VFR cues (Ref. 7). TABLE IV COOPER-HARPER PILOT RATING SCALE All the rating and control sensitivity data for the UARL pilots are summarized in Appendix A and the corresponding pilot comments are contained in Appendix B. Similar results from Calapan pilot B are presented in Appendix D. ### b. Control Power Data The total pitch,
$M_{\rm C}$, roll, $L_{\rm C}$, and yaw, $N_{\rm C}$, control moments (pilot control inputs plus that from the rate damping and attitude stabilization derivatives, i.e., the stability augmentation system commands) were measured for each test case in the longitudinal and lateral control and the directional control investigations. Pitch control moment and thrust-usage data were measured during the height control study. A representative schematic showing the point at which the pitch control-moment-usage data were measured # TABLE V # UARL FLYING QUALITIES QUESTIONNAIRE | o Tex | areas. | |---|--| | Comment on selection of control sensitivities | Comment on the following flying qualities areas. | | CONTROL | flving | | i
O | ring | | scrion | follow | | Sele | the | | r
o | Ö | | | Comment | | , | ŢŢ | - - Air-taxi-around-the-square. Ą. - Response to control inputs (all axes). ٠، ١ - Ability to initiate motion (each direction). - Ability to stabilize and hold desired velocities. - Ability to stop precisely and come to hover at corners. - Are excessive attitude changes (pitch and roll) required? - Ability to hold heading, altitude. Control deflections, trim. ٢. - Quick stops. m - Can you stop as quickly as you would like? - Are excessive attitude changes required? તાં - Ability to hold heading and altitude. - Control motions required. - Turn-over-a-spot. ບ່ - Ability to remain over spot. નં લં - Attitude control (pitch and roll), height control. - Ability to initiate and hold turn rate. - Ability to stop on preselected heading. ₩, ₩ - Comment on use of wing-tilt control. - Precision nover and vertical landing. ദ് - Ability to establish and maintain precision hover ä - a. Attitude and angular rates. - b. Position. - Adequate for vertical landing? പ് ന് - Control activity. - Secondary dynamics. ŭ - Did dynamics for one axis affect your control of another axis? ۲. - Overall evaluation. III. - Objectionable features. A. - Favorable features. ф - Special piloting techniques. ೮ - Pilot rating; why? ė. COMPARISONS TO ANY OTHER FLIGHT. MAKE EACH SET OF COMMENTS INDE-PLEASE AVOID ALL REFERENCE AND PENDENT OF ANY OTHER IMPORTANT: ٠, is shown in Sketch II-G. Control moment for roll and yaw control and thrust usage for height control were measured at corresponding points in the appropriate control loop. These control power data were recorded on an FM tape and the second production of the contract of the second SKETCH II-G. Representative (Pitch) Aircraft Control Loop Showing Point at Which Control-Moment Usage was Measured recorder. Control power usage for the experiments in which effectively unlimited control power was available was characterized by the percent time given moment levels were exceeded for a particular subtask. For those investigations in which control power was limited, the percent time that total control power commands exceeded these limits was of interest. exceedance percentages were computed off-line from the recorded control power data using an analog computer. Exceedance computations were performed on the magnitudes of the pitch, roll and yaw control moment data; $|M_{c}|$, $|L_c|$, $|N_c|$, respectively, and the combined pitch and roll moment results, $|M_c| + |L_c|$, from the longitudinal and lateral studies and from the directional control investigations. As indicated by the relationship $(|M_C| + |L_C|)$ the exceedance percentages for the combined pitch and roll signal were performed on the sum of the magnitudes of total pitch and roll control moments. For the height control data, the exceedance computations were performed on [M.] and on the negative or "up" collective part of $Z_{\delta c} \cdot \delta_c$ and $Z_{\delta c} \cdot \delta_c + Z_{Ws} \cdot w$. It was felt that exceedance percentages computed from the thrust used to ascend or arrest sink rates would be more significant than percentages based on both positive and negative thrust usage about the trim level (T/W = 1.0). Representative plots of exceedance results are shown in Fig. 5. There the percent time that $|M_c|$, $|L_c|$ and $|M_c|$ + $|L_c|$ exceed the given reference levels are shown with subtask as a parameter. These data are for one pilot and are plotted on a probability grid. For the type of plots in Fig. 5, a straight line indicates that the data can be characterized by a Gaussian probability distribution. There is some tendency for the curves from the hover and turn subtasks to exhibit this characteristic. To simplify the task of evaluating the effects of a variety of aircraft and task parameter changes on control power usage, the control power level exceeded 5 percent of the time was chosen for comparison. The 5-percent level was selected because it is generally near the upper limit of control power used by the pilot and would presumably be related to the required installed power. A previous UARL study showed some evidence to support this assumption (Ref. 13). On the other hand, it is not such a small percentile that it would be an unreliable indicator of overall control power usage. The data in Fig. 5, for example, indicate that if the 5-percent level is used to rank the subtasks as to control-moment usage, the results are consistent with the trends evident over all percentiles. However, the 5-percent level should be more sensitive to parameter changes than larger percentile levels. The 5-percent level results presented in this report were averaged over the two pilots participating in the study and over both moving- and fixed-base data to provide the largest possible data sample for a given test point. Averaging the moving- and fixed-base data appeared to be valid since the differences in these two types of data were less than the inter-pilot variation. That is, there was generally no dramatic difference between fixed- and moving-base data. Representative results which support this conclusion are shown in Fig. 6. ### 2. Analytical Investigations to Interpret the Data Two types of analytical efforts were undertaken to interpret and rationalize the experimental results. One involved converting the parameters in MIL-F-83300 which specify satisfactory V/STOL response into functions which could readily be compared with the UARL flying qualities and control power data. The computations were performed to permit evaluation of the MIL-F-83300 requirements for control sensitivities, control power and satisfactory levels of control lags and delays. The second type of analytical investigation was man-machine analysis of the different control loops (longitudinal, lateral, height and directional) closed by the pilot when controlling a V/STOL aircraft. The results of these analyses were used to select parameters to be considered in the experimental studies and to interpret pilot opinion data in terms of the pilot lead and gain compensation required. The closed-loop models and analytical techniques used here are discussed in detail in previous UARL reports (e.g., Refs. 7, 8 and 14). ### SECTION III ### RESULTS OF LONGITUDINAL AND LATERAL CONTROL STUDIES This section consists of two parts in which the results of the longitudinal and lateral control studies are discussed. Part A is concerned with flying qualities data and Part B with control-moment usage data. Details of the experimental design, the equipment and procedures and other background material are given in Section II. ### A. Flying Qualities Results Pilc+ ratings and pilot-selected control sensitivities from the studies of (1) turbulence, (2) control lags and delays, (3) control moment limits, (4) control moments through stored energy, (5) inter-axis motion coupling, (6) thrust-vector control independent of attitude, and (7) rate-command/attitude-hold control are discussed here. The data are interpreted using man-machine analysis methods and, where appropriate, are compared with MIL-F-83300. ### 1. Turbulence ### a. Pilot Ratings The flying qualities of the six basic configurations were each evaluated at three turbulence intensities ($\sigma_{\text{lg}} = \sigma_{\text{vg}} = 3.4$, 5.8 and 8.2 ft/sec) to determine the sensitivity of representative Level 1, 2 and 3 V/STOL aircraft to changes in turbulence intensity. Pilot ratings from these evaluations (Cases Tl through T18, Table A-II) are presented in Fig. 7. The pilots were not aware of the turbulence intensity level present for a given test case. As might be expected, the ratings generally deteriorated as gust intensity increased. However, it appears that the rate of deterioration may have been greater for configurations with the less stable (Levels 2 and 3) dynamics. For example, there was no degradation in ratings for the Level 1 configurations as rms turbulence intensity was increased from 3.4 to 5.8 ft/sec. A general increase in rating for the Level 1 configurations is evident, however, at the 8.2-ft/sec intensity, although the ratings all remain in the acceptable region (Fig. 7(a)). A much more definite deterioration in ratings is evident for the Level 2 and 3 configurations, especially for the change in turbulence intensity from 3.4 to 5.8 ft/sec. The degradation in rating is shown more clearly in Fig. 8 where it is plotted versus configuration flying qualities level, with the change in turbulence intensity treated as a parameter. The degradation in fixed-base ratings for Level 2 and 3 configurations is much greater than that for Level 1 configurations over the turbulence intensity interval 3.4 to 5.8 ft/sec. Except for BC4, which is Level 1 but relatively responsive to gusts, this trend is also evident (to a lesser extent) for the intensity interval 3.4 to 8.2 ft/sec. There is not sufficient moving base data to permit a complete comparison between levels. However, over the turbulence interval 3.4 to 8.2 ft/sec, the degradation in moving-base ratings for Level 1 configurations BC1 and BC4 is less
than the corresponding fixed-base degradation. The maving-base degradation for BC5 is greater than its fixed-base counterpart but still smaller than the fixed-base degradation for the Level 2 and 3 configurations. In summary, the pilot rating data would tend to indicate (but by no means confirm) that the MIL-F-83300 Level 1 requirement for V/STOL pitch, roll and yaw dynamic response (paragraph 3.2.2) provides aircraft dynamics which remain quite controllable for nominal increases in turbulence intensity. The lating data can be interpreted by considering the aircraft attitude and position response to turbulence and the phase lags of the attitude dynamics at frequencies critical to pilot control. It has been shown (Refs. 7 and 8) that pilot rating is related to both the workload involved in suppressing turbulence and the lead compensation he must supply to provide good closedloop attitude characteristics. This lead compensation is inversely dependent on the attitude phase lags over the frequency interval from about 1 to 4 rad/sec (Refs. 7 and 14). The frequency domain characteristics of the openloop attitude and position response to turbulence for the six basic configurations are shown in Figs. 9 and 10. The phase lags contributed by the pilot and the open-loop attitude dynamics for these configurations are presented in Fig. 11. The pilot's lags are assumed to consist of a pure delay of 0.09 sec in combination with a first-order lag having a 0.2-sec time constant (Refs. 7 and 14). An examination of the phase lag and turbulence response curves will indicate why the Level 1 configurations BC1 and BC5, and to a lesser extent, BC", have generally better flying qualities and are less affected by turbulence than the Level 2 and 3 configurations. The phase lags (Fig. 11) for BC1, BC4 and BC5 are all appreciably smaller than those for the Level 2 and 3 configurations over the critical frequencies ($\omega = 1.5$ to 4 rad/sec, Fig. 11). This indicates that the pilot need supply less lead compensation to provide good attitude control characteristics. Also, the normalized open-loop attitude and position power spectral densities for BCl and BC5 are appreciably smaller than those for the Level 2 and 3 configurations. The power spectral densities for BC4, the remaining Level 1 configuration, are comparable to those for BC2, BC3 and BC6 over the lower frequencies but are smaller at the higher frequencies which are more difficult for the pilot to suppress. Consequently, the opinion ratings for BC4 might be expected to exhibit a somewhat smaller sensitivity to gust intensity than BC2, BC3 and BC6. ### b. Control Sensitiv ties Longitudinal and lateral control sensitivity data are shown in Figs. 12 and 13, respectively. For most of the six configurations, the longitudinal control sensitivities, $M_{\delta e}$, tend to increase with turbulence intensity. This trend reflects the pilot's requirement for more rapid attitude and position responses to control inputs as he tried to maintain performance in the presence of increasing gust disturbances. For some of the configurations (BC4, BC5 and BC6) the lateral control sensitivities (Fig. 13) tend to increase with turbulence intensity, but this trend is not consistent for all configurations. In fact, the control sensitivities selected for BC3 tend to decrease slightly for the larger gusts. Such inconsistencies are not unexpected, since previous studies have shown that a fairly broad range of control sensitivities are acceptable to most pilots (Refs. 7 and 9). Figures 12 and 13 also contain boundaries for the maximum and minimum control sensitivities permitted under the MIL-F-83300 specification for aircraft attitude response to control inputs (paragraph 3.2.3.2). These sensitivity boundaries were back-calculated using the attitude response specifications and the known aircraft dynamics. It is apparent from the distance between these boundaries that the specification permits appreciable latitude in the installed V/STOL pitch and roll sensitivities. The values of $M_{\delta e}$ and $L_{\delta a}$ selected by the UARL pilots generally fall within these boundaries, but are much closer to the minimum acceptable level than the maximum. In fact, for the Level 1 configurations (BC1, BC4 and BC5), most of the lateral control sensitivities are somewhat below the lower boundary. Larger minimum values are required by ML-F-83300 for lateral control sensitivities than longitudinal, assuming the pitch and roll dynamics are symmetrical. In studies at UARL, however, ${ m L}_{\delta a}$ has generally been found to be smaller than ${ m M}_{\delta e}$ (Refs. 7 and 8). ### 2. Control Lags and Delays ### a. Pilot Opinion Ratings Pilot rating data from the three parts of the control lag and delay investigation are discussed in the following order: (1) first-order control lags, (2) first-order control lags in combination with a O.1-sec delay, and (3) second-order control lags. The test cases evaluated in these studies were LL1-LL27 and results of the evaluations are summarized in Table A-III (Appendix A). The effects of the first-order control lags on ratings are shown in Fig. 14. These lags affected only the pilot's control stick commands and not the SAS inputs. Also, the lags were identical for both pitch and roll. As might be expected, the ratings generally deteriorated as the lag time constant, $\tau_{\rm e} = \tau_{\rm a}$, increased. However, the sensitivity of a given configuration's flying qualities to the lag time constant appeared to correlate with the flying qualities level (without lags) of the configuration. For example, most of the ratings for the Level 1 configurations at $\tau_{\rm e}=\tau_{\rm a}=$ 0.6 sec were within one unit of the ratings given for no lags. The Level 2 and 3 configurations generally show a noticeable deterioration in rating at $\tau_{\rm e}=\tau_{\rm a}=$ 0.3 sec. The degradation in rating is plotted versus flying qualities level in Fig. 15 with the change in lag time constant as a parameter. There is considerable scatter in these results, but the fixed-base data generally show that the degradation in rating was greater for the Level 2 and 3 configurations. The Level 1 configurations should be somewhat less sensitive to control lags. The primary effect of the control lags is to introduce phase lags (Fig. 16) which increase the need for pilot lead compensation. They do not affect the aircraft response to turbulence. The Level 1 configurations require little lead compensation without lags because their open-loop phase lag is small (Fig. 11). Pilots will tolerate nominal requirements for lead compensation without a significant change in rating (Refs. 7 and 14). Consequently, the ratings for Level 1 configurations do not change appreciably until the lag time constant reaches a relatively large value (e.g., $\tau_{\rm e}$ = $\tau_{\rm a}$ = 0.6). However, for the Level 2 and 3 configurations the requirements for pilot compensation are at a relatively high level with no lags (Fig. 11). In this situation the pilots appear to be more sensitive to the increased lead requirements, possibly because it is more difficult to supply the needed increment. Note that the magnitude characteristics of the basic configuration-lag combination, which will not be discussed here, may also affect pilot opinion (Refs. 14 and 15). The specifications for pitch and roll control system lags can be evaluated using the pilot rating data in Fig. 14. The specification (paragraph 3.2.4) is based on the time it takes aircraft attitude to reach the initial maximum angular acceleration, $t\ddot{\theta}_{\rm max}$ and $t\ddot{\phi}_{\rm max}$, after the initiation of the control command. If these times are less than 0.3 sec the attitude dynamics are considered satisfactory. Values of these times have been computed with $\tau_{\rm e}=\tau_{\rm a}=0.1,\,0.3,\,{\rm and}\,0.6$ sec for each of configurations BCl, BC4 and BC5 and they are summarized in Table VI along with the associated pilot ratings. These results show that the specification permits a $\tau_{\rm e}=\tau_{\rm a}=0.3$ sec for the configurations evaluated; these cases were also generally rated satisfactory. The specification would preclude $\tau_{\rm e}=\tau_{\rm a}=0.6$ sec although the fixed-base ratings remained marginally satisfactory for these cases. However, the moving-base ratings for the first-order control lag evaluation were generally worse than the fixed-base results. Consequently, it would appear that excluding control lags much greater than $\tau_{\rm e}=\tau_{\rm a}=0.3$ sec, as the specification does, is prudent. TABLE VI COMPARISON BETWEEN PILOT OPINION RATINGS AND THE MIL-F-83300 REQUIREMENT FOR ACCEPTABLE ATTITUE CONTROL LAGS | Basic
Conf. | Iag Time
Constant, | Time to Max. Acceleration, $t_{max}^{*}=$ | Average Pilot Rating | | | |----------------|------------------------------------|---|----------------------|---------------------|--| | | $\tau_{\rm e} = \tau_{\rm e},$ sec | $t^{max}_{max}, \ ext{sec}$ | Fixed Base
Mode | Moving-Base
Mode | | | BCl | 0.1
0.3
0.6 | 0.19
0.31
0.38 | 2
2•75
2•5 | 5•5 | | | BC4 | 0.1
0.3
0.6 | 0.15
0.29
0.46 | 2
2•75
3•5 | 3•5
5 | | | BC5 | 0.1
0.3
0.6 | 0.18
0.30
0.38 | 2
2
3•5 | 3 | | The effects of adding a O.1-sec time delay in pitch and roll response for Level 1 and 2 configurations (level designation applies for no lags or delays) are shown in Table VII. Such delays also increase the requirements for pilot adapted lead compensation by increasing the phase lags in the attitude response to control inputs. However, as indicated in Fig. 16, a O.1-sec delay contributes relatively small phase lags over the frequency range (~1 to 4 rad/sec) most critical to pilot control of attitude. Time delays greater than 0.1 sec were not considered since the specification (paragraph 3.2.4) excludes them.
In this study the time delays (de = da) were added separately and in combination with first-order lags ($\tau_{\rm e}$ = $\tau_{\rm a}$) having 0.3-sec time constants. For one of the cases (indicated by the superscript 2 in Table VII) the time delays and lags affected both the pilot's control inputs and the SAS commands. For all other cases the time delays and lags operated only on the control input. For the Level 1 configuration (BC1) the O.1-sec time delays in the pilot's pitch and roll control inputs had little effect on pilot rating, whether or not the 0.3-sec lags were also present. For example, adding $d_e = d_a = 0.1$ sec with $\tau_e = \tau_a = 0$ did not change the pilot's rating (PR = 2 for both cases). Also, adding $d_e = d_a = 0.1$ with $\tau_e = \tau_a = 0.3$ ### TABLE VII ### EFFECTS OF TIME DELAYS AND CONTROL SYSTEM LAGS ON PILOT RATINGS | BCl is Level 1 and BC2 is Level 2 Without Lags and Delay | BC1 | is | Level | 1 | and | BC2 | is | Level | 2 | Without | Lags | ลทส์ | Delay | S | |--|-----|----|-------|---|-----|-----|----|-------|---|---------|------|------|-------|---| |--|-----|----|-------|---|-----|-----|----|-------|---|---------|------|------|-------|---| | Basic
Conf. | Lag Time
Constant,
$\tau_{e} = \tau_{e}$,
sec | Time
Delay
d _e = d _a ,
sec | Ratings from Pilot B
for Fixed-Base Mode | |------------------|---|---|---| | BCl ¹ | 0 | 0 | 2 | | | 0 | 0.1 | 2 | | | 0.3 | 0 | 2,5 | | | 0.3 | 0.1 | 3 | | | 0.3 ² | 0.1 ² | 8 ² | | BC2 ¹ | 0 | 0 | 5 | | | 0 | 0.1 | 5 | | | 0.3 | 0 | 5 | | | 0.3 | 0.1 | 7 | - 1. Symmetrical configurations lateral derivative has same value as corresponding longitudinal derivative; pitch and roll lags and delays equal. - 2. For this case the lag and delay operated on both the control input and the SAS command. For all the other cases only the control input was affected. resulted in a pilot rating deterioration of only 0.5 units relative to the rating with only the 0.3-sec lags. However, the results in Table VII show a dramatic change in rating when the lags and delays were relocated so that they affected both the control and SAS commands (PR = 8 versus PR = 3). In this case, the stability augmentation was much less effective and, as a result, the configuration was very difficult to control. The pilot's chief complaint (Case LI25, Table B-II, Appendix B) was that large pitch oscillations developed; it was nearly impossible to damp them and stabilize pitch attitude. The results for the Level 2 configuration (BC2) also snow little change when $d_e = d_a = 0.1$ were added with $\tau_e = \tau_a = 0$ sec. However, when the same delays were added to BC2 with τ_e $\tau_a = 0.3$ the associated pilot rating was two units worse than for the lags without the delays (PR = 7 versus PR = 5). Note, however, that the rating for the lags alone was somewhat better than would be expected. That is, it is the same rating (PR = 5) as was assigned to BC2 with neither lags nor delays present in the control response. The results in Table VII, although limited, would tend to indicate that O.1-sec delays in the pilot's pitch and roll control responses are acceptable, at least for Level 1 configurations. That is, the specification (paragraph 3.2.4) which permits delays in the pitch or roll attitude response to control inputs of up to O.1 sec, appears to be reasonable. Second-order lags were also evaluated during this study to provide some information on the generality of the MIL-F-83300 specification for control lags. The specification is based on the results of studies with first-order control lags; however, because it is phrased in terms of an angular acceleration response which must be achieved within a reference time interval, it may also apply to more general lags. Four sets of parameters for the second-order lag were evaluated ($\omega_{n_e} = \omega_{n_a} = 3.33$ rad/sec with $\zeta_e = \zeta_a = 0.22$, 0.50, and 1.0 and $\omega_{n_e} = \omega_{n_a} = 8.23$ with $\zeta_e = \zeta_a = 1.0$). As for the first-order lag study the lags only affected the pilot's control response and they were identical in pitch and roll. The initial combination of parameters was selected to have the same break frequency ($\omega_n = 3.33$) as that for an acceptable first-order lag ($1/\tau_e = \omega_{n_e}$ where $\tau_e = 0.3$). The damping ratio, $\zeta_e = \zeta_a$, was adjusted to give the same phase lag as that from the first-order lag in the region of the pilot's crossover frequency ($\omega_c = 2.5$ to 3 rad/sec; see Refs. 8 and 14). Consequently, the lead compensation requirements for the two lags would be similar. However, the nature of the control stick response would be quite different because of the lightly damped ($\zeta_e = \zeta_a = 0.22$) oscillations present for the second-order lag. The magnitude and phase characteristics of the open-loop pilot and attitude dynamics, without pilot lead or gain compensation, are shown in Fig. 17. Results from the evaluation of second-order lags with configuration BC1 (Fig. 18) show that the combination of parameters ($\zeta=0.22$, $\omega_n=3.33$) selected for equivalence with $\tau_e=\tau_{\rm E}=0.3$ resulted in a pilot rating of 10. Pilot comments indicated that the oscillatory pitch and roll motion was completely unacceptable. The ratings improved with increased damping ratio, but a satisfactory rating was not obtained even with $\zeta_e=\zeta_a=1.0$. Here the oscillatory dynamics were not a problem, but lead compensation was reeded to compensate the phase lags. Pilot rating was satisfactory for this damping ratio, however, with the larger natural frequency, $\omega_{\rm ne}=\omega_{\rm na}=8.23$ rad/sec. The attitude phase lags in the region of pilot crossover frequency (2.5 to 3.5 rad/sec) were somewhat smaller with these parameters. The pilot rating results from Fig. 18 are compared with $t\ddot{\theta}_{\rm max}=t\dot{\phi}_{\rm max}$ values computed for the second-order lag test cases in the following tabulation: | $\omega_{\rm n_e} = \omega_{\rm n_a}$, rad/sec | $\frac{\zeta_{\rm e} = \zeta_{\rm a}}{-}$ | $\frac{t_{\theta_{\text{max}}}}{\theta_{\text{max}}} = t_{\theta_{\text{max}}}$ | PR | |---|---|---|----| | 3.33 | 0.22 | 0.61 | 10 | | 3.33 | 0.50 | 0.58 | 7 | | 3.33 | 1.0 | 0.55 | 4 | | 8.23 | 1.0 | 0.33 | 3 | The only case rated satisfactory also had a time to maximum angular acceleration which was nearly equal (0.33 sec) to that required by the specification (0.30 sec). However, $t\ddot{\theta}_{max} = t\ddot{\phi}_{max}$ was almost twice the specification value (0.55 sec) at $\omega_{n_e} = \omega_{n_a} = 3.33$ rad/sec and $\zeta_e = \zeta_a = 1.0$ for a test case rated marginally satisfactory (PR = 4). These very limited results indicate, then, that the control lag specification may not be sufficiently general to apply to second-order control lags. ### b. Control Sensitivities Longitudinal and lateral control sensitivities from the investigation of first-order control lags are presented in Figs. 19 and 20, respectively. It might be expected that pilot-selected control sensitivities would increase somewhat with lag time constants since the lags result in slower attitude response. For the longitudinal sensitivities, $M_{\delta e}$, there is little evidence of this except possibly for configuration BC3 (Fig. 19). The lateral sensitivities, $L_{\delta a}$, exhibit some tendency to increase with τ_a and, again, this effect is more pronounced for BC3. Configuration BC3 is Level 3 and very difficult to control as the lags become larger. The pilots may have increased sensitivity in an attempt to more quickly attenuate the large attitude excursions which tended to develop for $\tau_e = \tau_a = 0.3$ and 0.6 sec. Boundary values for acceptable minimum and maximum longitudinal and lateral control sensitivities developed from the MIL-F-83300 specification for attitude control response (paragraph 3.2.3.2) are shown for the Level 1 configurations in Table VIII. Both the minimum and maximum boundaries increase with τ_e = τ_a because the specification is written in terms of an acceptable response after a given time period. Because the lags slow the attitude control response, the sensitivities must increase to satisfy the specification. For the small lag time constants the pilot-selected lateral and longitudinal sensitivities are close to the specification's lower boundaries (M $_{\delta e}$ and L $_{\delta a}$ are averages of fixed- and moving-base data). For the larger time constants the sensitivities fall below the minimum boundaries. Note also that the maximum sensitivity boundaries are very much larger than the UARL selected values. It may be appropriate to lower the minimum boundaries somewhat and it would seem that the maximum boundaries also could be reduced. The maximum allowable sensitivities would, in general, result in extremely "touchy" aircraft pitch and roll response to control inputs and could cause the pilot to overcontrol. TABLE VIII COMPARISON OF AVERAGED LONGITUDINAL AND LATERAL CONTROL SENSITIVITIES FROM THE CONTROL LAG STUDY WITH THE MIL-F-83300 REQUIREMENTS | Besic
Conf. | Lag Time
Constant, UARL Moe Boundar
$\tau_e = \tau_a$, M_{δ_e} | | 83300
indaries | uarl
L _{oa} | MIL-F-83300
L _{oa} Boundaries | | | |----------------|--|----------------|-------------------|-------------------------|---|-------
-------| | | e a,
sec | [‡] e | Min. | Max. | 0a, | Min. | Max. | | BCl | 0 | 0.291 | 0.233 | 1.560 | 0.271 | 0.312 | 1.560 | | | 0.1 | 0.303 | 0.261 | 1.740 | 0.244 | 0.348 | 1.174 | | | 0.3 | 0.311 | 0.342 | 2.278 | 0.223 | 0.456 | 2.278 | | | 0.6 | 0.372 | 0.490 | 3.268 | 0.312 | 0.654 | 3.268 | | BC4 | 0 | 0.342 | 0.258 | 1.721 | 0.302 | 0.344 | 1.721 | | | 0.1 | 0.404 | 0.291 | 1.940 | 0.334 | 0.388 | 1.940 | | | 0.3 | 0.403 | 0.384 | 2.561 | 0.321 | 0.512 | 2.561 | | | 0.6 | 0.412 | 0.552 | 3.683 | 0.384 | 0.737 | 3.683 | | BC5 | 0 | 0.293 | 0.233 | 1.560 | 0.243 | 0.312 | 1.740 | | | 0.1 | 0.304 | 0.261 | 1.738 | 0.241 | 0.348 | 1.738 | | | 0.3 | 0.283 | 0.343 | 2.288 | 0.220 | 0.458 | 2.288 | | | 0.6 | 0.324 | 0.489 | 3.263 | 0.301 | 0.635 | 3.263 | ### 3. Control Moment Limits In this study the installed control moments required for pilot acceptance were determined for several of the basic configurations (BC1, BC4, BC5 and BC6). The correlation between the requirements for control moment and the levels exceeded some given small percent of the time with unlimited moment available, i.e., the 5-percent level, was also examined. This study was performed with and without control system lags and delays. Also, the pilots were not aware of the control-moment limits except as they affected flying qualities. Results from this study are listed for Cases LM1-LM25 in Table A-IV in Appendix A. The effects of control-moment limits on pilot rating of the flying qualities of configuration. BCl, BC4, BC5 and BC6 are presented in Fig. 21. The reference limits or starting points for the installed control-moment levels (pitch, roll, and yaw) were averages of those levels exceeded 5 percent of the time $(\overline{\text{CM}}_5)$ with unlimited moment available (see Section III.B.l.d). These averages were computed over all subtasks, pilots and modes of simulator operation (fixed- and moving-base). The control-moment limits for the remaining test cases were obtained by increasing (or decreasing) the reference levels by integral multiples of 10 percent. Also, the limits were applied to the total control moment available for both control inputs and the SAS commands. Note that $\overline{\text{CM}}_5$ is different for each configuration and its magnitude scales approximately with the configuration's speed-stability parameters (see Table C-I, Appendix C). Only for configuration BC5 did control-moment limits equal to the average 5-percent exceedance level, $\overline{\text{CM}}_5$, result in ratings equivalent to those of unlimited moments (Fig. 21). Configuration BC5 is a very stable, Level 1 configuration with little response to turbulence. For configuration BC1, which is identical to BC5 except that its drag parameters are one-fourth as large, control moment limits at least 1.2 times the reference $\overline{\text{CM}}_5$ level were needed to obtain ratings equivalent to those for unlimited moments. For the configurations which were more responsive to turbulence (BC4) or both less stable and more response to turbulence (BC6), control-moment limits of 1.3 times the $\overline{\text{CM}}_5$ levels were required for equivalent ratings. For all the configurations examined, a deficiency in control moment was most evident as a momentary inability to control pitch, and to a lesser extent roll, when performing the maneuver and quick-stop subtasks. Pilot comments indicated that the limits on yaw control moment did not affect flying qualities. Table IX contains a comparison between the control-moment limits found to be necessary for pilot acceptance in this study and the control-moment TABLE IX COMPARISON OF UARL ACCEPTABLE CONTROL-MOMENT LIMITS WITH MIL-F-83300 REQUIREMENTS | | Control | Installe | Installed Control Moment, rad/sec ² | | | | | | |-------|-------------|-----------------------------|--|-----------------|--|--|--|--| | Conf. | Moment | Pitch, | Roll, | Yaw, | | | | | | | Source | ^M c _m | ^L c _m | N _{cm} | | | | | | BCl | UARL | 0.40 | 0.46 | 0.13 | | | | | | | MIL-F-83300 | 0.57 | 0.47 | 0.31 | | | | | | BC4 · | UARI: | 1.07 | 0.79 | 0.23 | | | | | | | MIL-F-83300 | 1.26 | 0.81 | 0.31 | | | | | | BC5 | uarl | 0.38 | 0.36 | 0.15 | | | | | | | mil-f-83300 | 0.57 | 0.48 | 0.31 | | | | | | всб | uarl | 1.16 | 0.98 | 0.22 | | | | | | | mil-f-83300 | 1.18 | 0.71 | 0.31 | | | | | requirements in MIL-F-83300. The control moment specification (paragraph 3.2.3.1) stipulates that sufficient control moment must remain at the maneuvering airspeed to simultaneously produce aircraft pitch, roll, and yaw attitude changes of $^{\pm}3$ deg, $^{\pm}4$ deg, and $^{\pm}6$ deg, respectively, within one second. The specification values shown in Table IX were computed assuming longitudinal and lateral maneuvering speeds equivalent to those used in the UARL task (≈ 15 ft/sec). Combining these airspeeds with the mean wind increases the effective longitudinal airspeed to ≈ 32 ft/sec. For the UARL simulation, then, the aircraft must have sufficient pitching moment, $M_{\rm Cm}$, to trim the 32-ft/sec airspeed and also to provide the $^{\pm}3$ deg pitch change within one second. The roll, $L_{\rm Cm}$, and yaw, $N_{\rm Cm}$, moments need only be sufficient to trim the 15-ft/sec lateral airspeed and provide the required attitude changes ($^{\pm}4$ deg and $^{\pm}6$ deg, respectively). The results in Table IX show that for all the Level 1 configurations (BC1, BC4, BC5) the pitch and roll control-moment requirements from MIL-F-83300 equalled or exceeded those found to be necessary in the UARL study. For BC6, a Level 2 configuration which is quite responsive to gusts, the specification value for $L_{\rm C_{III}}$ was about 20 percent low. However, the UARL level for $M_{\rm C_{III}}$ agrees well with the corresponding MIL-F-83300 value. Also, all of the specification levels for $N_{\rm C_{III}}$ were well in excess of the UARL results. It would appear from these relatively limited data that the MIL-F-83300 requirement for pitch and roll control moments is adequate. However, the yaw control-moment requirement seems somewhat excessive. Pilots never noticed a deficiency in yaw control moments during the UARL study even for levels of $N_{\rm C_{III}}$ considerably lower than the UARL data shown in Table IX. Limitations on pitch and roll control moment were predominant in the formation of rating. The MIL-F-83300 yaw control-moment requirement is discussed in more detail in Section V.A.3. It was pointed out previously that another objective of this study was to determine whether the required levels for installed control moments correlated with the percent time given pitch and roll moment levels were exceeded with unlimited moments available. In particular it was thought that the 5-percent exceedance level might be sufficient. The results in Fig. 21 do not appear to substantiate such an hypothesis. However, it may be that the maximum of the 5-percent exceedance levels measured for the different subtasks should have been used for $\overline{\text{CM}}_5$ instead of the average over all subtasks. These maximum values, averaged over both pilots and fixed- and moving-base simulator modes (Table C-I, Appendix C), are listed in Table X along with the pitch and roll moment levels necessary for pilot ratings approximately equivalent to those for unlimited control moment (Fig. 21). COMPARISON OF MAXIMUM FIVE-PERCENT EXCEEDANCE MOMENT LEVELS USED FOR ANY SUBTASK WITH ACCEPTABLE LIMITS ON INSTALLED ROLL AND PITCH CONTROL MOMENTS TABLE X | Basic
Conf. | Control
Moment | Maximum
5-Percent Level | Acceptable
Moment Level | | |----------------|-------------------|----------------------------|----------------------------|--| | BC1 | М _с | 0.34 | 0.43 | | | DOT | $^{ m L}_{ m c}$ | 0.45 | 0.50 | | | BC5 | М _с | 0.45 | 0.38 | | | BC) | ^L c | 0.50 | 0.36 | | | BC4 | М _С | 0.90 | 1.07 | | | DC4 | $^{ m L}_{ m c}$ | 0.62 | 0.78 | | | вс6 | ^M c | 0.93 | 1.16 | | | ВСС | Le | 0.94 | 0.98 | | The results in Table X show that only for configuration BC5 were the maximum 5-percent exceedance moment levels equal to or greater than those levels which were acceptable to the pilot. It appears, then, that the 5-percent exceedance level, whether it is composed of the average over all subtasks or the maximum for any subtask, does not provide acceptable levels of installed control moment. If configuration BC5 is considered an anomaly, the fact that control-moment levels of 1.2 to 1.3 times $\overline{\text{CM}}_5$ were acceptable may imply that a lower-percentile exceedance level, e.g., the 1 to 2 percent level, would provide acceptable installed control moments. Results related to this possibility are discussed in Section III.B.2. The control-moment requirements with control system first-order lags ($\tau_{\rm e} = \tau_{\rm a} = 0.3$ and 0.6) and delays ($\rm d_{\rm e} = \rm d_{\rm a} = 0.1$ for all test cases) were also evaluated in this study for configurations BCl and BC5. The procedures used and moment levels considered were identical to those for the evaluation of control-moment limits without lags. The effects of the control lags can be seen in Fig. 22. The necessary control-moment levels were increased by the control lags and delay. For example, control-moment levels for BCl equal to 1.4 $\overline{\text{CM}}_5$ were required with $\tau_e = \tau_a = 0.3$ and 0.6 and $d_e = d_a = 0.1$ for ratings equivalent to those with unlimited control moments. Control moments equal to only 1.2 $\overline{\text{CM}}_5$ were sufficient for BCl without lags and delay (Fig. 21). For configuration BC5, 1.2 $\overline{\text{CM}}_5$ was required with $\tau_e = \tau_a = 0.6$ and $d_e = d_a = 0.1$. Without the lags and delays the corresponding required moment levels were equal to 1.0 $\overline{\text{CM}}_5$. The control-moment specification (paragraph 3.2.3.1) will account for the additional control moments
required with control system lags and delays. It is stated in terms of minimum attitude responses within a certain time and, consequently, requires more installed control moments when control lags or delays are present. It should be noted, however, that the control moments required by MIL-F-83300 for no lags are generally equal to or greater than the UARL levels necessary with lags and delays. This is illustrated in the following list. | Basic | | IL-F-8330
ithout La | | UARL Acceptable
With Lags | | | | |-------|---|---|-----------|------------------------------|--|-------------|--| | Conf. | $\frac{M_{\mathbf{c_m}}}{M_{\mathbf{c_m}}}$ | $\frac{\mathrm{L}_{\mathrm{c}_{\mathrm{m}}}}{\mathrm{L}_{\mathrm{c}_{\mathrm{m}}}}$ | N_{c_m} | $\frac{M_{c_m}}{M_{c_m}}$ | $\underline{^{\mathbf{L}_{\mathbf{c}_{m}}}}$ | $N_{C_{m}}$ | | | BCl | 0.57 | 0.47 | 0.31 | 0.47 | 0.54 | 0.16 | | | BC5 | 0.57 | 0.48 | 0.31 | 0.46 | 0.44 | 0.18 | | Only $L_{\rm Cm}$ for configuration BCl from the UARL study is slightly greater than its MIL-F-83300 counterpart. If the control moment specification for $L_{\rm Cm}$ is computed with τ_a = 0.3 under the airspeed conditions discussed previously, the MIL-F-83300 requirement for $L_{\rm Cm}$ becomes 0.62 rad/sec², an increase of about 35 percent. If the 0.1 sec delay was also considered the percentage increase would be even greater. For τ_a = 0.6 the corresponding level for $L_{\rm Cm}$ is 0.81. In fact, the specification control moment requirement for control systems with acceptable lags may be excessive. For example, a control lag of 0.3 sec is permissible under MIL-F-83300 for both configurations BCl and BC5. However, such a lag will increase the specification control moment requirements by approximately 35 percent to levels which are much greater than those the UARL results would indicate are necessary. ### 4. Incremental Control Moment Through Stored Energy For this study the pilot could command a pitch control moment (stored energy effects were not simulated for roll) greater than the installed or continuously available total moment. It was assumed that this additional moment was provided by converting angular momentum from a rotor-propulsion system into an increment which decayed with time (as the angular momentum was dissipated). A more detailed discussion of this effect and a description of the simulation procedures used are given in Section II.B.l.e. Representative values for the present increment and the rpm decay (and recovery) time, determined from an analysis of XC-142 propulsion system data are $\Delta M_C = 0.3 M_{CM}$ and $\tau_{\Delta} = 0.05$ to 0.10 sec. Values for τ_{Δ} of 0.2 may be possible for helicopters. Cases LS1-LS3 were aluated for the stored energy investigation and flying qualities results are surrarized in Table A-V in Appendix A. The results in Fig. 23 were obtained using values for $\rm M_{cm}$ which resulted in flying qualities that were significantly worse than those for unlimited control moments. The effects of stored energy were then evaluated for different combinations of $\Delta \rm M_{c}$ and τ_{Δ} . Data are presented for basic configurations BCl, BC4, BC5 and BC6 ($\rm M_{cm}$ was different for each). Some general improvement in opinion is evident in Fig. 23 for $\Delta \rm M_{c}=0.30~\rm M_{cm}$ and $\tau_{\Delta}=0.10$. Definite improvement is evident for all configurations with $\tau_{\Delta}=0.20$, although the ratings are poorer than for unlimited pitch control moment. Note that for $\Delta \rm M_{c}=0.50~\rm M_{cm}$ and $\tau_{\Delta}=0.20$ the flying qualities of BCl are rated equal to those for unlimited pitch control moment. Time histories of $M_{\rm C}$, the total pitch control moment, which show the effects of stored energy are presented in Fig. 24. These results were measured for the maneuvering subtask with configuration BCl and $M_{\rm Cm}=0.36$. The stored energy parameters considered are $\Delta M_{\rm C}=0.3~M_{\rm Cm}$ (0.11 rad/sec²) with $\tau_{\Delta}=0.1$ and 0.2 sec and $\Delta M_{\rm C}=0.5~M_{\rm Cm}$ (0.18 rad/sec²) with $\tau_{\Delta}=0.2$ sec. These are the parameters used with BCl to provide the pilot ratings shown in Fig. 23. The stored energy contribution is evident in Fig. 24 as a peak which decays relatively quickly to the $M_{\rm Cm}$ level. Note that there is a reduction in the amount of time that the control moment is limited as the contribution from stored energy is increased. ### Inter-Axis Motion Coupling ### a. Pilot Ratings Attitude rate coupling (M_p, L_q) and control coupling $(M_{\delta a}, L_{\delta e})$ were evaluated to determine acceptable limits for such effects (Cases LC1-LC8, Table A-VI, Appendix A). A related objective was to determine whether changes to MIL-F-83300 are needed to account for motion coupling. Background information on this study is contained in Section II.B.l.f. Results from the evaluation of motion coupling are shown in Fig. 25. Pilot ratings and control sensitivities are plotted there versus the level of rate coupling with control coupling shown as a parameter. Configurations BC1 and BC2 were evaluated. For most of the results the coupling effects were additive. For example, a positive pitch control input yields a positive pitch rate and since both L_q and $L_{\delta e}$ were negative, the induced rolling moment was also negative. For one test case coefficients having signs which resulted in cancelling moments (Lq < 0, L $_{\delta e}$ > 0 and M $_p$ > 0, M $_{\delta a}$ < 0) were also evaluated. Note that the pitch and roll rate ccupling levels were always equal as were the values for longitudinal and lateral control ccupling. Pilot rating showed a significant, consistent deterioration with rate coupling (Fig. 25(a)). There were no threshold effects evident in pilot rating as control coupling was changed from zero to $M_p = -L_q = 2$. That is, this level of coupling brought about a deterioration in rating of 2 units and the trend continued as rate coupling was increased. Without rate coupling, control coupling ratios up to $M_{\delta a}/L_{\delta a} = -L_{\delta e}/M_{\delta e} = 0.5$ brought about only a 1 unit decrement in rating (a value of 0.5 indicates a large amount of control coupling). As rate coupling was added the increase in rating (deterioration) caused by control coupling also became somewhat larger. It appears from Fig. 25(a) that a control coupling ratio of 0.25 could be expected to produce a 0.5 to 1 unit deterioration in rating while a ratio of 0.5 results in a 1 to 1.5 unit increase. The deterioration in rating for configuration BC2 caused by $M_p = -L_q = 2$ and $M_{\delta a}/L_{\delta a} = -L_{\delta e}/M_{\delta e} = 0.25$ was equivalent to that for BC1 with the same coupling parameters. Also, no change in rating occurred for BC2 when the signs of $M_{\delta a}$ and $L_{\delta e}$ were changed such that the rate and control coupling compensated somewhat for each other. Attitude rate coupling appeared to have a greater effect on rating than control coupling for the levels considered in this study. The results in Fig. 25(a) would tend to indicate that MIL-F-83300 should restrict rate coupling to magnitudes less than about 1 per sec. Also, control coupling ratios greater than about 0.25 should not be permitted. ### b. Control Sensitivities Both the longitudinal and lateral control sensitivities generally tended to increase with rate coupling (Figs. 25(b) and 25(c)). The pilots apparently felt they needed a more rapid attitude response to control the coupling motion. Also, the control sensitivities for the 0.5 control coupling ratio were slightly larger than those for no control coupling. However, as indicated by the MIL-F-83300 reference lines (Fig. 25(b)), the longitudinal control sensitivities for BCl are within the specification (the maximum boundary is well above the limits of the plot's ordinate scale). Also, the minimum boundary for BC2 is even lower than that for BC1 (not shown). The lateral BC1 sensitivities (Fig. 25(c)) for low rate coupling are somewhat lower than the minimum boundaries. However, the pilots would have had no difficulty controlling with sensitivities corresponding to the specification minimums. effect of rate and control coupling on control sensitivities is not specifically accounted for by the MIL-F-83300 paragraph on response to control inputs (paragraph 3.2.3.2). However, the range of sensitivities permitted by MIL-F-83300 is sufficiently large that the increase in ${ m M_{\delta e}}$ and ${ m L_{\delta a}}$ caused by control coupling does not result in their exceeding the upper boundary. ### 6. Independent Thrust-Vector Control Pilot ratings from the evaluation of longitudinal thrust-vector control independent of aircraft pitch attitude (ITVC) are shown in Fig. 26 and summarized under Cases LII-LII5 in Table A-VII in Appendix A. Lateral ITVC was not considered. The pilots were instructed to rate aircraft flying qualities based on their ability to perform longitudinal-position control tasks using thrust-vector-angle rotation with a minimum of pitch-attitude changes. Note that for the other parts of the UARL program the pilots could change the thrust vector to offset the effects of the mean wind acting through the longitudinal drag parameter. However, he was not permitted to use it for general position control. For the ITVC evaluation he was required to attempt to control longitudinal position exclusively with thrust-vector-angle rotation. Two Level 1 configurations (BC1, BC4) and a Level 2 configuration (BC2) were evaluated with ITVC. For configuration BCl, with thumb-switch thrust-vector control and control-stick pitch control and the thrust-vector angle displayed on the contact analog (Fig. 26(a)), the best ratings
obtained were nearly as good as those for conventional thrust-vector control through attitude changes (PR = 2 to 2.5 for BCl with conventional control). The pilots did not find it difficult to control aircraft position with the thrust-vector angle while regulating attitude. The lack of extensive experience with ITVC may have been the major reason for the slightly poorer ratings compared with those for conventional control. Pilot B also evaluated ITVC (thumb-switch thrust-vector control) for configuration BCl with only an instrument-panel display of thrust-vector angle. For this case his rating was somewhat poorer because alternating his attention between the contact analog and the thrust-vector-angle panel display increased the difficulty of the control task. With the thrust-vector angle on the contact analog (the cross symbol moved vertically on the right side of the screen to indicate angle) the pilot could derive both longitudinal position and thrust-vector-angle information simultaneously. It should be noted that a thrust-vector-angle display was essential to the performance of the longitudinal maneuvering task. Without such a display longitudinal position could not be stabilized. The pilots apparently controlled thrust-vector angle as an inner loop and aircraft position as an outer loop. This is similar to closure of the pitch-attitude loop as an inner loop for conventional V/STOL aircraft control systems (Ref. 8). For configuration BC4 the best pilot ratings for ITVC with thumb-switch thrust-vector control (PR \sim 4 for $\dot{\gamma}$ = 20 deg/sec, Fig. 26(a)) were slightly poorer than those for conventional control (PR = 3 to 3.5). Configuration BC4 (a high-drag configuration) is Level 1 but more responsive to gusts. The larger position 'isturbances associated with BC4 appear to be the reason that the best overall ratings for this configuration were assigned with $\dot{\gamma}$ = 20 deg/sec. Rapid thrust-vector angle rates were needed to control position. For BC2, the Level 2 configuration (with conventional control), the best rating for thumb-switch ITVC (PR = 4) was slightly better than that for conventional attitude control (PR = 4.5 to 5). Configuration BC2 is Level 2 because of its lightly damped attitude dynamics. It may be that control of this configuration was improved with ITVC, because it was not necessary to change attitude to move the aircraft longitudinally. As a result, attitude motion was not excited to the extent that it was for the conventional control system and the pilot's workload may have been reduced. Results from the evaluation of stick thrust-vector-angle control and thumb-switch attitude control are shown in Fig. 26(b). The thrust-vector-angle change per inch of stick input (or sensitivity) was varied in this study, but the rate-of-change of pitching moment from the thumb switch was fixed at a predetermined satisfactory value. A O.1-sec lag in thrust-vector-angle response was also simulated. For configuration BCl this method of ITVC was satisfactory (Fig. 26(b)), i.e., ratings were similar to those for thumb-switch thrust-vector control. Recall that BCl has very stable attitude dynamics and little attitude or position response to turbulence. However, configuration BC4 could not be controlled with the stick ITVC and thumb-switch attitude control system. This was due to the difficulty in controlling attitude with the thumb switch for this gust sensitive configuration. The pilot could not pay the necessary attention to attitude control and still control position with ITVC. The result was eventual loss of control. The same comments apply to this type of control for configuration BC2. The UARL evaluation of thrust-vector control independent of aircraft attitude indicates that it could be an acceptable substitute for conventional attitude control, when properly implemented. For large aircraft with Level 1 dynamics the use of ITVC should provide ratisfactory flying qualities while enabling the pilot to avoid pitch (or roll) attitudes that could lead to ground strikes. For aircraft having large drag parameters $(X_u;\,Y_v)$ ITVC would also enable the pilots to control position without the large attitude angles that result for such aircraft with conventional position control through attitude. However, the results from this study for an aircraft with large drag parameter (BC4, $X_u = Y_v = -0.2$) indicate that position control for such aircraft remains moderately difficult even with ITVC. ### 7. Rate-Command/Attitude-Hold Control The attributes of rate-command/attitude-hold control are that it (1) provides a pitch (roll) rate response proportional to pilot stick commands, and (2) maintains aircraft trim attitudes while enabling the pilot to center his control stick (see Section II.B.1.h. for background). Ratecommand/attitude-hold control can be developed with a conventional rate and attitude stabilized V/STOL, by inserting an integration between the pilot's control inputs and the aircraft attitude response. However, to provide satisfactory flying qualities the rate damping and attitude stabilization must be increased to offset the phase lag introduced by the integrator. can be accomplished by increasing the damping ratio, ζ , of the aircraft's oscillatory roots (with rate damping) and increasing the natural frequency, ω_{n} , of these roots (with attitude stabilization) beyond the attitude-loop crossover frequency ($\omega_c \approx 2.5$ to 3.5 rad/sec, Ref. 8). Representative effects of changes in ζ and ω_n on the magnitude and phase characteristics of the open-loop pilot-pitch attitude (with no pilot compensation) transfer function are shown in Fig. 27. These results show that increasing ω_n reduces the phase lags near the crossover frequencies $\omega_{\rm c}\approx$ 2.5 to 3.5 rad/sec (and, correspondingly, the pilot lead compensation) more than increasing ζ . Cases LR1-LR15 were evaluated in this study. Flying qualities results for the case are listed in Table A-VIII in Appendix A. ### a. Pilot Ratings The pilot ratings in Fig. 28 for a configuration having the basic airframe dynamics (i.e., speed stabilities and drag parameters) of BCl show the effects of both ζ and ω_n for rate-command/attitude-hold control. Ratings are shown in Fig. 28(a) for $\omega_n = 2.80$, 3.44, 6.30 and 7.10 rad/sec. Again, the pitch and roll dynamic characteristics were identical. Several values of ζ were considered for ω_n = 2.8 and 6.3. The data in Fig. 28(a) indicate that for ω_n in the region of the pitch- and roll-loop crossover frequencies, e.g., $\omega_{\rm n}$ = 2.80 and 3.44, satisfactory ratings cannot be achieved even with ζ values approaching 1.0. However, for $\omega_n \ge 6.3$ satisfactory ratings resulted for ζ values of 0.5 and possibly lower. Configuration BC4 was evaluated with two natural frequency values ($\omega_n = 4$ and 5 rad/sec) different from those for BCl to provide a relatively complete map of the effects of natural frequency. There is a significant difference between the moving- and fixed-base data for BC4, but, again, ratings are better for the larger ω_n . It appears, also, that damping ratios in the neighborhood of 0.7 are probably necessary to insure satisfactory flying qualities for these $\omega_{ m n}$ values. A rate-command/attitudehold control system was also evaluated for hover and low-speed flight in a previous Boeing study (Ref. 16). In that study an ω_n of 5 rad/sec with ζ = 0.9 resulted in good ratings for lateral flying qualities (PR = 2 to 3 for the optimum control sensitivity) and unsatisfactory ratings were obtained for $\omega_n = 2.5 \text{ rad/sec}$ with $\zeta = 0.9$. These results agree fairly well with the UARL data. Although the UARL pilots rated a number of the rate-command/attitudehold test cases satisfactory (LR4, LR6, LR8 and LR15, Table A-VIII, in Appendix A) their comments indicate that it provided no particular benefits for hover and low-speed flight operation. For this type of flight the pilots did not hold given aircraft pitch and roll attitudes sufficiently long to appreciate the fact that trim attitudes could be maintained with the stick centered. Also, the UARL study was conducted without stick centering forces and small offsets from the stick null position resulted in attitude errors when the pilots attention was diverted elsewhere. Finally, it should be noted that the dynamic response portion of MIL-F-83300 (paragraph 3.2.2.1) which stipulates the pitch and roll dynamics necessary for satisfactory flying qualities does not apply to rate-command/attitude-hold control. paragraph excludes pitch and roll dynamics having an aperiodic root at the origin and admits oscillatory dynamics with $\zeta = 0.3$, providing ω_n is ≥ 1.1 rad/sec. The data from the UARL study show that rate-command/attitude-hold systems are acceptable, although they have an aperiodic root at the origin. However for them to be acceptable, their ω_n must be much greater than 1.1 rad/sec if ζ is only 0.3. Of course, it was not intended that MIL-F-83300 should necessarily apply to rate-command/attitude-hold systems. ### b. <u>Control Sensitivities</u> Longitudinal and lateral control sensitivities from the rate-cormand/attitude-hold study are shown in Fig. 29. The control sensitivities increase with ω_n but do not show well-defined trends with ζ . The increases in $\mathrm{M}_{\delta e}$ and $\mathrm{L}_{\delta a}$ with ω_n are to be expected, since larger sensitivities are needed to offset the restoring moments resulting from this large "spring constant". Upper and lower boundary values for control sensitivity, computed from the MIL-F-83300 requirements for control response, are shown in Fig. 29. Two sets of boundary levels, corresponding to two different values of ω_n , are shown for each of the configurations
(BCl and BC4) evaluated. All of the sensitivities affected by the boundary limits shown lie within the acceptable region. ## 8. Effect of Motion on Pilot Ratings for Longitudinal and Lateral Control The results of a comparison of pilot ratings for longitudinal and lateral control from moving-base (MB) and fixed-base (FB) evaluations of identical test cases are summarized in Table XI. There the FB-ratings for the different test cases are categorized according to rating level, i.e., satisfactory, unsatisfactory, and unacceptable. The associated MB ratings for the test cases in a given FB rating category are then listed according to whether the MB ratings were better than, equal to, or worse than the corresponding FB rating. The moving-base ratings were consistently no better than, and generally worse than, the fixed-base ratings for the same test cases. This trend holds for all three of the FB rating categories. Relatively high frequency pitch and roll control inputs must generally be used to control longitudinal and lateral position properly. There may have been a tendency for the pilots to make more abrupt control commands and also to tolerate disagreeable attitude motions (observed on the visual display) more for fixed-base operation. The addition of motion would have made the pilot more aware of undesirable characteristics in test case dynamic responses. This effect could have overshadowed the benefits of added control cues through motion and caused the poorer moving-base ratings. TABLE XI EFFECT OF MOTION CUES ON PILOT RATINGS FOR LONGITUDINAL AND LATERAL CONTROL | | Corresponding Moving-Base Rating | | | | | | |---|--|--|---|--|--|--| | Fixed-Base (FB) Rating-Level, Number of Ratings | Better than FB
Number/Percent of
Total | Equal FB
Number/Percent of
Total | Worse than FB
Number/Percent of
Total | | | | | Satisfactory,
18 | 4/22 | 3/17 | 11/61 | | | | | Unsatisfactory,
20 | 7/35 | 1/5 | 12/60 | | | | | Unacceptable,
6 | 1/1? | 4/66 | 1/17 | | | | ### B. Control - Moment Usage The discussion of the control-moment usage data is presented in four parts. In part 1 the effects of a number of aircraft, control system and task parameters on pitch, roll and simultaneous pitch and roll control-moment usage (as defined by the moment levels exceeded 5 percent of the time) are described. These results were obtained from experiments in which essentially unlimited control moment was available to the pilot. Specifically, the effects of turbulence intensity, aircraft speed stability and drag parameters, flying qualities level, control system lags, motion coupling, and subtask are described. A comparison is also shown between actual simultaneous pitch- and roll-control-moment usage and hypothetical maxima and minima for such simultaneous usage. These results provide insight into the degree to which pilots make simultaneous control commands. In part 2 results from the study of control-moment limits are discussed. The percent time that total control-moment commands exceeded the installed limits are presented and correlated with the pilot acceptance of the limits. Parts 3 and 4 are concerned with control-moment usage results for the unconventional control systems considered: independent thrust-vector control and rate-command/attitude-hold control, respectively. In general, comparisons with the MIL-F-83300 specification for control moments are not made in the discussions of control-moment usage. There are two reasons for this: (1) control-moment comparisons were already made in the discussion of the flying qualities results for the control-moment limits study (Section III.A.3) and, (2) the control-moment usage data are described in terms of the 5-percent-exceedance levels which were shown to be lower than the control-moment limits required for pilot acceptance (Section III.A.3). However, the 5-percent-exceedance levels do provide a useful measure for evaluating control-moment usage (see Section II.D.1.b.). Additional control moment usage data are shown in Appendix E. Exceedance plots based on control moment usage in the maneuvering subtasks are presented there which further illustrate the effects of a variety of aircraft and control system parameters. # 1. Effects of Aircraft, Conventional Control System and Task Parameters on Control-Moment Usage ### a. Turbulence Intensity The effects of turbulence intensity ($\sigma_{\rm ug} = \sigma_{\rm vg}$) are presented in Figs. 30 and 31 and also listed in Table C-I in Appendix C. The data in Fig. 30 are for configuration BCl which requires little pilot compensation or "lead" (Level 1) and is relatively unresponsive to turbulence. That is, the configuration has a relatively high level of stability augmentation ($M_{\rm q} = L_{\rm p} = -1.7$ and $M_{\rm \theta} = L_{\rm \phi} = -1.2$) and the stability derivatives which describe the moments and forces caused by turbulence, speed stability and drag parameters, respectively, are small ($M_{\rm ug} = -L_{\rm vg} = 0.33$, $X_{\rm u} = V_{\rm v} = -0.05$). Figure 31 presents results for configuration BC6 which is Level 2, and more responsive to gusts ($M_{\rm ug} = -L_{\rm vg} = 1.0$, $X_{\rm u} = Y_{\rm v} = -0.20$). For configuration BCl (Fig. 30) the moment levels corresponding to the 5-percent exceedance level generally increase with turbulence intensity for all tasks, although there is appreciable scatter in the results. Also, none of the 5-percent moment levels (pitch, roll, or combined) scale linearly with turbulence. That is, there is a factor of about 2.4 increase in rms turbulence intensity from 3.4 ft/sec to 8.2 ft/sec but the 5-percent control-moment levels at 8.2 ft/sec are not 2.4 times as great as those for 3.4 ft/sec. The reason the control-moment levels do not scale may be that the control inputs necessary for task performance and the pilot's inadvertent inputs form a bias 5-percent moment level upon which the turbulence effects are superimposed. Of course, the 5-percent moment level for pitch has an additional bias due to the 10 kt mean wind acting through $M_{\rm U}$. This bias moment is approximately 0.18 rad/sec². The levels for configuration BC6 (Fig. 31) are significantly larger than those for BC1. This is to be expected because of the greater response of BC6 to gusts, meneuvering airspeeds and the mean wind. For example, the bias moment in pitch for BC6 due to the mean wind is approximately 0.53 rad/sec². The 5-percent roll control-moment levels for BC6 are generally somewhat smaller than those for pitch, probably also because of the increased bias moment in pitch from the mean wind. In addition, the roll moment levels for BC6 show more of a tendency to scale with turbulence than those for configuration BC1. Turbulence has a greater effect on control-moment requirements for BC6 than BC1 because of the greater response of BC6 to gusts. Consequently, it might be expected that in the absence of significant mean-wind effects, as is the case for roll, the control-moment levels for BC6 would exhibit a greater tendency to scale with turbulence. ### b. Speed-Stability Parameter In Fig. 32 and Table C-1 in Appendix C, control-moment results are presented for configurations BC5 and BC4 which show the effects of aircraft speed stability (Mug, Ivg). Both of these configurations have sufficient stability augmentation to yield Level 1 flying qualities and each has drag parameters of $X_{U} = Y_{V} = -0.2$ per sec. Their speed-stability parameters differ by a factor of three, however $(M_{11}g = -L_{12}g = 0.33)$ for BC5 and 1.0 for BC4). The levels in Fig. 32 show an appreciable increase with speed stability for all three control-moment categories. For the individual-axis control moments the increment due to increased speed stability is greater for pitch where the effects of the mean wind are significant. Also, for none of the moment categories does the change in the 5-percent exceedance level scale directly with the factor of three change in speed stability. This would tend to indicate that the control-moment levels required to arrest and initiate position rates and those caused by random pilot inputs are appreciable. If they were not, we might expect 5-percent levels to scale with speed stability because the remaining disturbance moments due to maneuvering airspeed, the mean wind and turbulence all scale with speed stability. It is interesting to note here, also, that MIL-F-83300 accounts, to an appreciable extent, for the effects of speed stability on required control moments. This is accomplished by stating that the required aircraft response must be demonstrated at the airspeeds involved in task performance (paragraph 3.2.3.1, Ref. 1). Also, in the control-moment limit study the specification was found to be adequate for configurations having both large $(M_{\rm H}g = -L_{\rm V}g = 1.0)$ and small $(M_{\rm H}g = -L_{\rm V}g = 0.33)$ speed-stability parameters (Section ITI.A.3). ### c. Drag Parameter The change in the reference control-moment levels with drag parameter (X_{ii}, Y_{ij}) are shown in Fig. 33 and Table C-I in Appendix C. Configurations BC1 and BC5 are identical except that the drag parameters for BC5 are four times those for BC1 (-0.20 versus -0.05). The results in Fig. 33 show a small general increase in the levels for configuration BC5 which has the larger drag parameters. Increased drag parameters result in larger position disturbances from turbulence. However, maneuvering position rates are generally smaller because of the larger drag forces and these rates are easier to arrest because of the increased position damping. The increased disturbances due to turbulence would probably necessitate larger controlmoment levels while the other effects of drag parameter should not increase, and could reduce,
the required control levels. That is, the attitude angles and rates-of-change need not be as great to arrest position rates for configurations with larger drag parameters. It appears then, from the results in Fig. 33, that the effects of turbulence may have been domirant since the 5-percent levels increased slightly with drag parameter. increase would appear to be relatively small, however, for a large change in drag parameter. Certainly, the effects of changes in drag parameter are less than those for the changes in speed-stability parameter that were examined. ### d. Level of Flying Qualities The V/STOL Flying Qualities Specification (MIL-F-83300, Ref. 1) defines three flying qualities levels. Level I flying qualities are "clearly adequate for the mission," Level 3 are such that the "aircraft can be controlled safely but pilot workload is excessive or mission effectiveness is inadequate, or both" and Level 2 flying qualities lie between these extremes. The control-moment usage data observed for configurations with Level 1, Level 2, and Level 3 dynamic characteristics are shown on Fig. 34. Results are presented there (and also in Table C-I in Appendix C) for configurations BC4, BC2, and BC3 (Level 1, 2, and 3 configurations, respectively), which have identical speed-stability parameters ($M_{\rm llg} = -L_{\rm lg} = 1.0$). The drag parameters are not identical for each configuration, but drag parameter has a much smaller effect on the 5-percent control-moment level (Fig. 33). There is a general increase in these exceedance moment levels for configurations which fall into the three flying qualities levels of paragraph 3.2.2 in Ref. 1 (Fig. 34) for all three moment categories. That is, as the flying qualitie: are degraded through reductions in stability augmentation, the control mements used increase. This would indicate that stability augmentation does a more efficient job of compensating the aircraft dynamics and attenuating turbulence inputs than does the pilot. It would appear also that the required levels of installed control moments are decreased with improved aircraft flying qualities. ### e. Control System Lags Control lags appeared to have little effect on control-moment usage. Five percert moment levels for configurations having control system lags are shown in Figs. 35 and 36 (configurations BC5 and BC4, respectively). These data are also summarized in Table C-II in Appendix C. The addition of control lags to BC5, which is Level 1 and has low turbulence response, resulted in a small decrease in the 5-percent levels for pitch and combined control-moment usage, but the levels for roll do not show a consistent change. The effects of control lag on the 5-percent levels for configuration BC4 (Fig. 36) are even less consistent than those for BC5. Configuration BC4 is also Level 1 but more responsive to turbulence than BC5. ### f. Inter-Axis Motion Coupling The effects of both rate and control coupling on the pitch moment levels exceeded 5 percent of the time for configuration BCl can be seen in Fig. 37 and Table C-IV in Appendix C. Control coupling $(M_{\delta a}/L_{\delta a}=L_{\delta e}/M_{\delta e})$ is treated as a parameter in the three plots of Fig. 37 which correspond to different rate-coupling levels $(M_p=-L_q)$. The effects of control coupling alone are shown in Fig. 37(a) where $M_p=-L_q=0$. These data indicate no significant increase in M_{C5} for a change in control coupling ratios from 0 to $M_{\delta a}/L_{\delta a}=-L_{\delta e}/M_{\delta e}=0.5$. Recall that for satisfactory pilot ratings control coupling ratios should be kept below 0.25 (Section III.A.5). Consequently, the results in Fig. 37(a) indicate that for acceptable levels of control coupling, the control-moment usage is not changed significantly from that for no control coupling. However, the results in Fig. 37 show that rate coupling does influence control-moment usage. By comparing the fixed-base data for no control coupling across Figs. 37(a), (b), and (c), it can be seen that pitch control-moment usage increases with rate coupling level. Rate coupling levels greater than $M_p = -L_q = 1$ appear to be unacceptable if satisfactory flying qualities are to be achieved (Section III.A.4). The results in Fig. 37 would indicate that such rate-coupling levels could result in approximately a 10-percent increase control-moment usage. ### g. Subtask Four major subtasks were performed by each pilot during the control-moment-usage study --- maneuvering or air taxi, quick stop, turn-over-a-spot and hover. Two of these, the maneuver and quick-stop subtasks, could be further subdivided according to the direction (longitudinal or lateral) in which the subtask was performed. The effects of each subtask on the 5-percent control-moment-usage level can be seen in Fig. 38 and Table C-I in Appendix C. These data were all obtained for the 3.4 ft/sec turbulence intensity level and with the 10-kt mean wind from the north. Note that the aircraft was always headed into the wind except for the turn maneuver. The subtask for which the pitch and roll 5-percent exceedance level was most often the largest was the quick stop (Fig. 38); the next largest values were for the maneuvering subtask. The lowest levels (pitch and roll) were most often recorded for hover and the next lowest for the turn subtask. The quick stops involve somewhat larger maneuver rates than air taxi and these rates are arrested abruptly. Consequently, it is not surprising that the largest control moments were used there. Hover, on the other hand, generally requires smaller control inputs and the pilots tended to make fewer inadvertent inputs for this subtask. This was generally the situation for turn as well, except that the pilots at times introduced large pitch and roll attitudes for lightly damped configurations, e.g., BC2 and BC3. The combined control-moment-usage levels are shown with the maneuver and quick-stop subtasks divided into their longitudinal (x) and lateral (y) components. The lateral quick stops resulted in the largest 5-percent-exceedance levels for combined usage and the next largest levels were used for the lateral maneuvers. The combined usage for lateral maneuvering and quick stops may have been larger than that for the same longitudinal subtasks because the lateral subtasks required appreciable control moments while pitch moments were also necressary to compensate for the mean wind. For the longitudinal subtasks pitch moments were needed to perform the maneuvers in the mean wind but roll inputs were small. The lowest levels for simultaneous usage were recorded for the hover task. ### h. Simultaneous Usage An indication of the pilot's tendency to make pitch and roll control inputs simultaneously can be obtained by comparing the sum of the moment levels used for the individual axes with the actual simultaneous usage levels. If the 5-percent-exceedance moment levels for pitch and roll are added, the resulting control moment is that level which would be exceeded 5 percent of the time if the pitch and roll control moments were used simultaneously. The sum of these levels then represents a theoretical maximum for simultaneous moment usage. Also, a practical minimum level for combined usage can be developed if it is assumed that the pitch and roll inputs are independent, i.e., that the pilot does not intentionally correlate his pitch (roll) inputs with the roll (pitch) control motions. Curves representing the hypothetical maxima and minima for the simultaneous control usage 5-percent exceedance level are shown in Fig. 39 along with the 5-percent moment levels for actual simultaneous usage. The results presented for all six configurations are for the hover subtask only (Table C-I in Appendix C). Similar data were not available in sufficient quantity for the other subtasks. The levels representing the upper curve indicate the 5-percent moment levels which would occur if all the pilot's pitch and roll inputs were made simultaneously. The points on the lower curve are the square root of the appropriate sum of the squared 5-percent levels for pitch and roll. That is, it was assumed that the pitch and roll control moments were independent and could be represented by Gaussian probability distributions (the nearly linear curve for hover in Fig. 5 indicates that the Gaussian assumption is reasonable). It can be shown, then, that the square root of the sum of the squares of the individual 5-percent levels represents the simultaneous usage 5-percent level. The remaining curve in Fig. 39 shows the 5-percent levels for actual simultaneous control usage. This curve lies about midway between the two extremes. These results would indicate that, for the hover subtask at least, the minimum total installed control moment for both pitch and roll could be set somewhat less than the sum of the maximum used for individual axis control. However, this total level must still be greater than a level which would be satisfactory for single-axis control. ### 2. Percent Time Control Moment Commands Exceed Limits The control-moment limit study (Section III.A.3) was conducted to determine (1) acceptable levels of installed moments for several V/STOL configurations (BC1, BC4, BC5 and BC6) and (2) whether these limits correlated with the 5 percent exceedance levels measured with unlimited control moments. It was found in that study that control moments greater then the 5-percent levels were needed for pilot acceptance. The results presented here give some indication of the acceptability of installed control moments in terms of the percent time the total control command actually exceeds these limits. Figure 40 contains plots of the percent time total pitch and roll control commands exceeded the installed moments during the maneuvering subtask versus the magnitude of the installed moments (Table C-III in Appendix C). These maximum available control moments, CMm, are stated as multiples of the average
moment levels exceeded 5 percent of the time with unlimited available moments, CM5. Note that CM5 is different for each basic configuration. As would be expected, the percent time the total moment command exceeded the installed moments decreased as CMm became larger. the exceedance percentages become very small as CMm approaches those levels needed for pilot acceptance (CMm pprox 1.2 to 1.3 CMz for BC1, pprox 1.0 CMz for BC5 and ≈ 1.2 to 1.3 CM5 for BC4 and BC6). For pitch control the exceedance percentages at acceptable CMm range from about 1.5 percent (average fixedand moving-base results for BC1) down to almost zero. For roll control the percentages are about the same magnitude. It would appear from these limited results that for pilot acceptability, installed control moments must be set at levels which will not be exceeded often in flight. #### 3. Control-Moment Usage for Independent Thrust-Vector Control Independent thrust-vector control might be expected to reduce the requirements for control moments since it eliminates the need to change attitude in order to maneuver the aircraft. However, control moments are still required to attenuate the attitude response to gusts and trim the moments due to airspeeds (developed from maneuvers and the mean wind) acting on the speed-stability parameters. Pitch control-moment- and thrust-vector-angle-usage data are listed in Table C-V in Appendix C. In Fig. 41 the pitch and control-moment 5-percent exceedance levels for ITVC and conventional pitch attitude control are presented for configurations BCl and BC4. For both configurations the value of $M_{\rm C5}$ for ITVC is consistently somewhat smaller than that for conventional attitude control. Exceedance computations were also performed on measured thrust-vector-angle data from the study of ITVC (Table C-V in Appendix C). For the turn maneuver with configuration BCl the 5-percent thrust-vector-angle exceedance levels ranged from approximately 2 to 8 deg. ## 4. Control-Moment Usage for Rate-Command/Attitude-Hold Control Pitch control-moment-usage results for the rate-command/attitude-hold control system are shown in Fig. 42 for three values of the natural frequency of the oscillatory dynamics (ω_n = 2.8, 3.44 and 6.3 rad/sec) and several levels of the damping ratio, ζ . These data are presented for test cases having the basic airframe stability derivatives of configuration BCl. As the damping ratio was increased for both ω_n = 2.8 and 6.3 rad/sec, the configuration became easier to control and the 5-percent exceedance moment level decreased. However, for the two test cases yielding the best fixed-base ratings (ω_n = 3.44, ζ = 0.87, PR = 4 and ω_n = 6.3, ζ = 0.47, PR = 2.5) the fixed-base 5-percent moment usage levels were still greater than the corresponding levels for BCl with conventional attitude control (see Fig. 41). A CONTROL OF THE PROPERTY T #### SECTION IV #### RESULTS OF HEIGHT CONTROL STUDIES The height control results are discussed in two parts. In part A, the flying qualities data, i.e., pilot opinion ratings and control sensitivities, are discussed and compared with the applicable paragraphs of MIL-F-83300. In part B, the measured thrust-usage data are described. Background material on the experimental design and procedures are contained in Section II. The flying qualities data, pilot comments and measured thrust-usage results from the UARL pilot evaluations are summarized in Appendices A, B and C, respectively. Results from the Calspan pilot evaluations discussed in this section are summarized in Appendix D. ## A. Flying Qualities Results Four separate investigations were conducted during the height control study. These investigations were concerned with (1) the effects of height velocity damping with effectively unlimited thrust-to-weight ratio, (2) the interaction between height velocity damping and thrust-to-weight ratio, (3) lags and delays in the thrust response, and (4) incremental thrust through stored energy. ## 1. Height Velocity Damping ## a. Pilot Opinion Ratings The effects of height velocity damping, Zw, on pilot opinion for effectively unlimited thrust-to-weight ratio, T/W>1.15, are presented in Fig. 43 and summarized in Table A-IX (Cases HZl through HZ4 and HZ25 through HZ28). Data are shown in Fig. 43 for one Calspan pilot and two UARL pilots. Calspan pilot evaluations were conducted with no simulated winds and with the simulator in the moving-base mode, while the UARL pilot results were obtained for fixed- and moving-base simulator operation and the standard wind simulation (10-kt mean wind from the north and 3.4 ft/sec gusts along the aircraft x and y body axes). The configurations simulated during these evaluations were BCl and BC4 which both have Level 1 longitudinal and lateral flying qualities. The ratings from all three pilots are unsatisfactory (and quite similar) for less damping than about $Z_W = -0.35$ per sec. For $Z_w = 0$ the ratings ranged from 8 to 10 and the pilots all commented that stabilizing aircraft vertical motion was extremely difficult. also indicated that it would probably be impossible to perform any other task, such as a lateral air taxi, in addition to controlling height (see Appendix B, Table B-VIII). The improvement in rating with increased levels of height velocity damping correlates well with the associated reduction in Preceding page blank requirements for pilot lead compensation. The phase lags in the neight response to height errors are shown in Fig. 44. Pilots must compensate for these lags at frequencies important to closed-loop height control (0.5 to 1.0 rad/sec; Ref. 7). It is apparent in Fig. 44 that the lead requirements diminish with additional $Z_{\rm W}$. The specification for minimum height velocity damping (varagraph 3.2.5.4) indicates that, for effectively unlimited T/W ($T/W \ge 1.10$), satisfactory height control characteristics can be obtained with $Z_W = 0$. The results in Fig. 43 indicate that the flying qualities are unacceptable without height velocity damping. If the pilot's only task were to control height he may be able to stabilize the altitude loop with $Z_W = 0$. However, the UARL results indicate that if he is also expected to perform tasks involving longitudinal, lateral or directional motion, altitude errors of at least ± 20 ft could be expected. In addition, the precision with which the other tasks could be performed would be seriously degraded by the attention which would have to be given to height control. ## b. Collective Control Sensitivities Pilot-selected control sensitivities from the investigation of height velocity damping are shown in Fig. 45. The sensitivities change little with $Z_{\rm W}$ although there is a tendency for them to become larger as damping is increased. The minimum permissible MIL-F-83300 boundaries for collective control sensitivity are also plotted in Fig. 45. These boundaries are stated in terms of achieving a climb rate of 100 ft/min 1.0 sec after an abrupt 1-in. control input. Consequently, the boundaries increase as the damping is increased. The control sensitivities from this study all lie well within the allowable range, but they are much closer to the minimum boundary than the maximum. The maximum permissible collective control sensitivities range from $Z_{\rm DC} = 12.5$ to 18.1 as $Z_{\rm W}$ changes from 0 to -0.8. # 2. Interaction Between Height Velocity Damping and Thrust-to-Weight Ratio Figure 46 contains results which demonstrate the interaction between $Z_{\rm W}$, T/W and pilot ratings. These data are also listed in Table A-IX, Cases HZ1 through HZ28. In Fig. 46 pilot ratings are presented on a plot of total height velocity damping, $Z_{\rm WT}$, versus T/W. Similar plots of the results from other height control studies were used to formulate height control power requirements for MIL-F-83300. The data on Fig. 46 were obtained for UARL and Calspan pilots and for fixed- and moving-base flight simulator operation. The basic configuration evaluated was BCl. For most of the data points, $Z_{\rm WT}$ consisted of equal parts of aerodynamic ($Z_{\rm Wg}$) and SAS ($Z_{\rm Wg}$) height velocity damping. However, as indicated in Fig. 46 some of the cases were evaluated with either $Z_{\rm Wg}$ or $Z_{\rm Wg}$ (but not both) set to zero. It should be noted that Z_{W_S} is provided only within the available T/W. That is, thrust used for damping is instantaneously unavailable for control. Also shown in Fig. 46 are Level 1, 2 and 3 boundaries for height control power from MIL-F-83300. A definite trade off between the effects of T/W and Z_{WM} on pilot opinion is indicated by the results in Fig. 46. For example, as T/W is increased at constant Zwm, ratings generally improve. Conversely, as the damping is increased for a given T/W, rating also generally improves. These effects tend to justify, to some extent, the shape of the MIL-F-83300 boundaries. However, the data in Fig. 46 are not in complete agreement with these boundaries. One notable exception occurs for the Level 1 boundary at T/W = 1.10 where the UARL results would indicate that total damping greater than -0.25 is necessary for satisfactory ratings. That is, the boundaries in Fig. 46 imply that a T/W>1.10 is required for a satisfactory rating at $Z_{WPP} = 0$. However, the results shown previously in Fig. 45 indicate that even an "unlimited" T/W will not provide satisfactory ratings for $Z_{Wm} = 0$. The UARL data would indicate, then, that another boundary line which excludes damping levels smaller than -0.25 should be added to Fig. 46. this boundary were present the UARL data would also support the movement of the line separating Level 1 and 2 regions to the left. That is, it appears that for a given Z_{WT} less T/W is needed to place a coeffiguration in a Level 1 category than MIL-F-83300 requires. The interaction between aerodynamic,
$Z_{W_{\mathbf{R}}}$, and SAS, $Z_{W_{\mathbf{S}}}$, height velocity damping shown in Fig. 46 merits discussion. A decelerating force which is proportional to descent velocity is available to arrest sink rates in aircraft which have $Z_{W_{\alpha}}$. Such force may have an appreciable effect on height control for aircraft with limited installed T/W. This increased decelerating force is not available in aircraft with only $\mathbf{Z}_{\mathbf{W}_{\mathbf{S}}}.$ Ratings showing the effects of Z_{Wa} and Z_{Ws} , with T/W as a parameter, are presented in Fig. 47. For all the cases shown, the total damping was Z_{WT} = -0.25, but the relative amounts of Z_{Wa} and Z_{Ws} were varied. For T/W = 1.02 it appears that the improved ability to arrest sink rates resulting from increased $Z_{\mbox{Wa}}$ had a significant impact on flying qualities. As Z_{Wa} was changed from \tilde{O} to -0.25, pilot rating improved by two units. As T/W was increased the decelerating force from $Z_{W_{\mathcal{B}}}$ became less important since the pilot had sufficient T/W to adequately ascend and arrest descents. This is reflected in the smaller change in rating over the same Z_{W_2} interval for the larger T/W values. In fact, the moving-base ratings for T/W = 1.10 show almost no variation with Z_{Wa} . ## 3. Lags and Delays in Thrust Response The effects on pilot rating of first-order lags and a O.1-sec delay in the thrust response are presented in Fig. 48 and Table A-X (Cases HL1 through HL8). Two values of lag time constant, τ_h = 0.3 and 0.6 sec were evaluated at three levels of Z_{WT} : -0.25, -0.35 and -0.50. The thrust-to-weight ratio was held constant at 1.05 and configuration BCl was used for the longitudinal and lateral flying qualities. Except for Z_{WT} = -0.50, rating deteriorates with increasing τ_h . The decrement appears to be related to Z_{WT} as well as the change in τ_h (Fig. 48). That is, rating is somewhat less sensitive to τ_h for the higher damping levels. The upward shift in the curves with Z_{WT} is expected since the phase lag in height response at any given τ_h , and hence the pilot's lead compensation, decreases with increasing damping (see Fig. 44). Note also, that the addition of a 0.1-sec delay had little effect on rating (Fig. 48). Pilot rating for Z_{WT} = -0.35 with d_h = 0.1 sec and τ_h = 0 is equal to that for no delay, and for τ_h = 0.3 the rating with a 0.1-sec delay is only a half unit poorer than for no delay. The specification for lags in thrust response (paragraph 3.2.5.2) is phrased in such a way that, with no delays, a first-order control lag time constant of up to 0.3 sec is permissible. For a $\rm d_h=0.1$ the specification would permit a lag of $\tau_h\approx 0.2$ sec. The UARL data in Fig. 48 would indicate that the specification is reasonable, providing the aircraft has a $\rm Z_{WT}$ of at least -0.25 to -0.35 per sec. This is the range of minimum values of damping found to be acceptable in the height control studies with no lags. The previous results (e.g., Fig. 43) would indicate that for $\rm Z_{WT}=0$, $\tau_h=0.3$ would be completely unacceptable. Also, the specification does not account for the reduction in phase lags contributed by τ_h or $\rm d_h$, and the associated improvement in rating, which can be achieved with increased levels of $\rm Z_{WT}$. This effect is illustrated in Fig. 48 and is discussed in detail in Ref. 7. usuntannaan inimmissi addunacionisi oranipungan-poppahendisingi in odonisi kangkangkangkangkangkangkangkangkang ## 4. Incremental Thrust Through Stored Energy The effects of incremental thrust through stored energy (see Section II.A.2.d for background) were investigated with a height control configuration that was unsatisfactory without the stored energy contribution. However, the longitudinal and lateral dynamics were quite easy to control (configuration BCl). For height control the installed T/W was only 1.02 and $Z_{Wm} = Z_{Ws} = -0.35$, i.e., the pilot had no additional decelerating force from Zwa when descending. Without the incremental thrust from stored energy, height control was unsatisfactory (FR = 4). The change in rating was evaluated for incremental thrust-to-weight ratios of $\Delta T/W = 0.13$ and 0.28 and for decay time constants of τ_{Δ} = 0.05, 0.10 and 0.20 sec (Cases HS1 through HS5, Table A-X). With $\Delta T/W = 0.13$, an improvement in rating was not evident until T_A = 0.20 (Fig. 49). For the larger thrust increment, $\Delta T/W$ = 0.28, a general improvement in rating occurred for τ_{Λ} = 0.10 sec. For both the $\Delta T/W$ = 0.13, τ_{Λ} = 0.20 and $\Delta T/W$ = 0.28, τ_{Λ} = 0.10 combinations, the ratings improved by about one unit to PR = 3.0. For effectively unlimited T/W, the rating was 2.5. The results indicate that for au_A values which might be typical for helicopters, i.e., τ_{Λ} = 0.10 to 0.20 sec, the effects of incremental thrust through stored energy can be significant. It should be noted, also, that for height control the pilot probably does not use the stored energy effects to their fullest advantage. Height control generally involves low-frequency control motions; consequently, the stored energy in the rotor system is not used as often as it is for pitch and roll control. ## 5. Effect of Motion and Pilot Ratings for Height Control Fixed-base (FB) and moving-base (MB) pilot ratings for height control are compared in Table XII. The FB ratings for the different test cases are categorized by general rating level (satisfactory, unsatisfactory and unacceptable). The associated MB ratings are then tabulated according to whether they were better than, equal to, or worse than the FB ratings. The results in Table XII are mixed and only for the unsatisfactory FB rating TABLE XII EFFECT OF MOTION CUES ON PILOT RATINGS FOR HEIGHT CONTROL | Fixed-Base (FB) | Corre | sponding Moving-Base | Rating | |---------------------------------|--|--|---| | Rating Level, Number of Ratings | Better Than FB
Number/Percent
of Total | Equal FB
Mumber/Percent
of Total | Worse Than FB
Number/Percent
of Total | | Satisfactory, | 1/25 | 1/25 | 2/50 | | Unsatisfactory, 7 | 5/72 | 1/14 | 1/14 | | Unacceptable, | 0/0 | 2/100 | 0/0 | category is a definite result indicated. For this category the moving-base ratings were generally better than the corresponding fixed-base data. It would appear that motion helped in the control of these more difficult test cases. It may be that the motion was more beneficial for height control than for longitudinal and lateral control because the visual display provides less information on height error than it does for these other two axes. Consequently, motion cues would have helped more for height control. This effect may not have been evident for unacceptable FB ratings because the rating scale becomes less sensitive to such effects due to its implicit non-linearities for the unacceptable region. That is, for test cases which are very difficult to control the differences between 7 and 8 or 8 and 9 ratings are not easy to establish and pilots tend to rate such cases similarly. ## B. Thrust Usage Thrust-usage data were obtained which show (1) the effects of Z_W , (2) the percent time that pilots attempted to exceed the installed thrust-to-weight ratio, and (3) the effects of lags. The thrust exceedance results were computed using only the pilot and total thrust commands for which T/W > 1. These are the collective inputs which are used to accelerate upward and to arrest sink rates. Also, thrust usage levels are given in terms of incremental thrust-to-weight ratio, i.e., (T/W-1). ## 1. Height Velocity Damping The effects of total height velocity damping, Zwm, on the level of incremental thrust-to-weight ratio exceeded 5 percent of the time are shown in Fig. 50 and listed in Table C-VII. Results are shown for both the collective command, $Z_{\delta c} \cdot \delta_c$, and the total thrust command, $Z_{\delta c} \cdot \delta_c + Z_{W_S} \cdot w$. Three levels of Zwp (0, -0.25 and -0.5 per sec) were evaluated for effectively unlimited T/W (T/W > 1.15). The data in Fig. 50 show that Z_{WT} has a significant effect on the 5-percent exceedance level, (T/W-1)5. The 5-percent level for $Z_{Wm} = 0$ is as much as six times that for Z_{Wm} of -0.25 or -0.5. Obviously, the stability augmentation system makes much more efficient use of the installed thrust than the pilot. Also, there generally seems to be little difference between the exceedance levels for $Z_{Wm} = -0.25$ and -0.50. It would appear that increasing Z_{Wm} above what is a minimum satisfactory level (e.g., $Z_{Wm} \sim -0.25$) does not lead to significant changes in thrust usage. Note also that for relatively well damped cases, $Z_{Wm} = -0.25$ and -0.50, the largest thrust levels are used for the landing sequence. This is to be expected, since for this subtask the pilot intentionally makes several large altitude changes. For $Z_{Wm} = 0$, however, large thrust levels are used for other subtasks in which the pilot is merely attempting to maintain constant altitude. Normally, large values of (T/W-1) are not needed for such control if the height dynamics are acceptable to the pilot. ## 2. Limits on the Installed Thrust-to-Weight Ratio The effects of limits on the installed thrust-to-weight ratio are discussed in terms of the percent time pilots attempted to exceed the incremental T/W available. The collective control was not physically constrained at the thrust limits for this study. The thrust limits were evident only in the way they affected height control. Consequently, if the pilot felt he needed more thrust, he tended to move the collective lever
accordingly, whether or not the installed T/W had been exceeded. Results are presented in Fig. 51 for two levels of Z_{WT} (-0.25 and -0.50) with T/W as a parameter. For Z_{WT} = -0.25 (note that τ_n = 0.3 for the T/W = 1.05 data) the two types of commanded thrust, $Z_{\delta c} \cdot \delta_c$ and $Z_{\delta c} \cdot \delta_c + Z_{WS} \cdot w$, both exceeded the T/W = 1.02 level a large percent of the time. Fifty percent was not uncommon for $Z_{\delta c} \cdot \delta_c$ and 20 percent was typical for the total commanded thrust. However, the percentages for T/W = 1.05 were much smaller. More often than not, the T/W = 1.05 level was never exceeded. The results for Z_{WT} = -0.50 show the same trends, but the percent time a given level is exceeded is smaller. For example, the maximum percent time that T/W = 1.02 was exceeded for any subtask was 30 percent. Also, the only time that T/W = 1.05 was exceeded was for the landing sequence and the percentage there was relatively low. These results provide another example of SAS making more efficient use of thrust than the pilot. ## 3. Thrust Response Lags Some limited data showing the effects of an acceptable first-order lag in thrust response (τ_h = 0.3) are presented in Fig. 52. For these results Z_{WT} is -0.25 and T/W is 1.10. The 5-percent exceedance levels are generally somewhat larger for τ_h = 0.3 (and appreciably larger for the y-maneuver subtask) than for the no lag case. However, these data are too limited to permit the conclusion that significantly more thrust is needed for height control systems with lags. #### SECTION V #### RESULTS OF DIRECTIONAL CONTROL STUDIES The results of the directional control studies are presented in two parts. Pilot ratings and pilot-selected control sensitivities are discussed and compared with applicable paragraphs of MTL-F-83300 in part A. In part B the measured yaw control-moment data are discussed. Background information related to the directional control experiments is contained in Section II. The flying qualities data, pilot comments, and control-moment data are summarized in Appendices A, B and C, respectively. ## A. Flying Qualities Results Three different studies were conducted during the directional control program. These studies consisted of evaluations of the effects of (1) yaw rate damping, (2) control system lags and delays, and (3) limits on yaw control moment. ## 1. Yaw Rate Damping Pilot rating is plotted versus yaw rate damping level, Nr, in Fig. 53(a) for configurations BCl and BC2. Note that these ratings are for directional control only. Three values of N_r (0, -0.5 and -1 per sec) were evaluated at $N_{\rm tr}=0.005$. Pilot rating was marginally unacceptable (PR \sim 6.5) for $N_{\rm r}=0$ and marginally satisfactory (PR = 3.5 to 4) for $N_r = -0.5$. Ratings improved to about 2.5 with $N_r = -1$ for both BCl and BC2. Recall that BC2 has Level 2 longitudinal and lateral characteristics and such dynamics result in an increase in overall pilot workload. It might have been expected, therefore, that a degradation in pilot rating of the directional flying qualities could result. However, this was not the case. The reason for the improvement in rating with damping level can be interpreted in terms of the pilot lead compensation necessary for good closed-loop directional control characteristics. As for height control, the directional lead compensation requirements are related to the open-loop phase lags of the directional dynamics (and the pilot dynamics) in the frequency range of 0.5 to 1 rad/sec (Ref. 7). These phase lags are shown in Fig. 54. It is apparent that the need for lead compensation is diminished as N, becomes more negative. The MIL-F-83300 requirement for directional damping (paragraph 3.2.2.2) states that for Level 1 flying qualities the yaw mode must be stable with a time constant no greater than one sec. This is approximately equivalent to specifying $N_{\rm r}$ = -1 for Level 1 flying qualities and the UARL results in Fig. 53(a) show that satisfactory ratings result for such a value. The data also indicate that a somewhat lower damping level of about -0.5 per sec ## Preceding page blank may provide satisfactory directional control for $N_{\rm V}$ = 0.005. However, the value of $N_{\rm V}$ can be larger than 0.005 for helicopters and V/STOL aircraft. Since directional flying qualities generally deteriorate with increasing $N_{\rm V}$ (Ref. 7), the $N_{\rm r}$ = -1 Level 1 requirement appears reasonable. THE THE PROPERTY OF PROPER Control sensitivities selected by the pilots during the yaw rate damping study are shown in the following list along with the minimum and maximum values permitted by MIL-F-83300. The UARL data from the two pilots and the moving- and fixed-base evaluations have been averaged. | | | MIL-F-8 | | |------------------|---|--------------|------------------------------| | | UARL | Boundaries | for $^{ m N}\!\delta_{ m r}$ | | $N_{\mathbf{r}}$ | $^{ ext{N}}\!\delta_{ extbf{r}}$ | Minimum | Maximum | | ********* | *************************************** | | | | 0 | 0.207 | 0.210 | 0.804 | | -0.5 | 0.236 | 14 و. 3 أباء | 0.935 | | -1 | 0.299 | 0.282 | 1.080 | The UARL control sensitivities almost match the lower boundary values from MIL-F-83300 and, consequently, they are well below the upper limits for $N_{\delta r}$. ## 2. Control Lags and Delays First-order lags in yaw response to the pilot's pedal inputs having time constants of τ_W = 0.1, 0.3 and 0.6 were evaluated with and without a 0.1-sec time delay. Two values of N_r (-0.5 and -1) were used with configuration BCl providing the longitudinal and lateral dynamics. Pilot ratings from these cases are shown in Fig. 53(b). There is a consistent deterioration in rating with lag time constant for both N_r = -0.5 and -1. Also, the Δ PR due to the different N_r values remains about the same for all τ_W , i.e., the ratings for N_r = -1 are consistently about 1 unit better. The addition of the 0.1-sec delay did not change the ratings significantly (Fig. 53(b)). The effect of the lags and the different N_r values can once more be rationalized in terms of the required pilot lead compensation. The phase lags encountered in directional control increase with τ_W which in turn increases the requirement for pilot lead compensation and this causes pilot rating to deteriorate. Increasing the damping level, N_r, reduces the phase lags and thereby improves the pilot's rating at a given value of τ_W . The results in Fig. 53(b) show that for a Level 1 value of N_r (-1), first-order lags with time constants of up to τ_{ij} = 0.3 are acceptable. The specification for directional control lags (paragraph 3.2.4) is written in terms of an allowable time within which the initial maximum yaw acceleration must occur (times < 0.3 sec). The value of times for the lag cases evaluated (with and without $d_{\psi} = 0.1$ sec) with $N_{r} = -1$ are summarized in the following list. | N _r | $\frac{ au_{\psi}}{ au}$ | $ rac{\mathrm{d}\psi}{}$ | tij/max | PR | |----------------|--------------------------|--------------------------|--------------|------------| | -1 | 0,1 | 0
0.1 | 0.24
0.34 | 3
2 | | -1 | 0.3 | 0
0.1 | 0.51
0.61 | 3.5
3.8 | | -1 | 0.6 | 0
0.1 | 0.86
0.96 | 4.8
4.7 | Without delays the specification excludes $\tau_{\psi} = 0.3$ (tymax = 0.51>0.30) although this test case was rated satisfactory. Also, the specification permits a 0.1-sec delay which the UARL data indicate is reasonable. However, if $d_{\psi} = 0.1$ is present a 0.1-sec increment is added to tymax. As a result, some combinations of d_{ψ} and τ_{ψ} which are acceptable to the pilot, e.g., $\tau_{\psi} = 0.3$ and $d_{\psi} = 0.1$ are made to appear even more unacceptable in terms of the MIL-F-83300 requirement. That is, tymax = 0.61 for $\tau_{\psi} = 0.3$ and $d_{\psi} = 0.1$ which is twice the allowable tymax value (0.30), yet the averaged rating for this case is almost on the satisfactory boundary (FR = 3.8). The control lag specification (paragraph 3.2.4) assumes that the time to maximum angular acceleration limit of 0.3 sec is applicable to pitch, roll and yaw motion. It was shown previously (Section III.A.2) that this requirement is adequate for first-order lags in pitch and roll response. However, it appears that a longer time to maximum angular acceleration is appropriate for yaw. #### 3. Control-Moment Limits Yaw control-moment limits were evaluated to determine acceptable values of installed yaw moment for the UARL task. The total yaw control moment was limited, but pitch and roll control moments were effectively unlimited. This evaluation was conducted for two values of N_r (-0.5 and -1 sec) with configuration BCl. The reference value for yaw moment was the average level exceeded 5 percent of the time for the turn subtasks conducted during the turbulence intensity study (\overline{N}_{C5} = 0.10). Note that this value of \overline{N}_{C5} was appropriate only for configuration BCl. Larger values were recorded for other configurations (see Section III.A.3). Pilot ratings from this study are presented in Fig. 55. For the Level 1 value of N_r (-1) an installed yaw control moment of N_{Cm} \approx 1.3 \overline{N}_{C5} was necessary for pilot acceptance. With N_r = -0.5 the required value for N_{Cm} was considerably larger ($\approx 1.6~\overline{N}_{C5}$). If nominal lateral maneuvering velocities of 15 ft/sec are assumed, MIL-F-83300 requires that the installed yaw control moment be approximately 0.31 rad/sec². This level is well in excess of the 0.13 rad/sec² found to be necessary with configuration BCl. However, as mentioned previously, the levels of yaw control moment used varied among the different Level 1 configurations (\overline{N}_{C5} = 0.175 for BC4 and 0.15 for BC5). If it were assumed that for configuration
BC4 the required installed N_{Cm} = 1.3 \overline{N}_{C5} , then N_{Cm} would have to be 0.228 rad/sec². This value is also less than the 0.31 rad/sec² specified by MIL-F-83300. ## 4. Effect of Motion on Pilot Ratings for Directional Control Fixed-base (FB) and moving-base (MB) pilot ratings for directional control are compared in Table XIII. The method of comparison is similar to TABLE XIII EFFECT OF MOTION CUES ON PILOT RATINGS FOR DIRECTIONAL CONTROL | Efred Page (ED) | Corresp | onding Moving-Base | Rating | |---|--|--|---| | Fixed-Base (FB) Rating Level, Number of Ratings | Better Than FB
Number/Percent
of Total | Equal FB
Number/Percent
of Total | Worse Than FB
Number/Percent
of Total | | Satisfactory, | 2/40 | 1/20 | 2/40 | | Unsatisfactory, | 5/62.5 | 1/12.5 | 2/25 | | Unacceptable, | 1/100 | 0/0 | 0/0 | that described previously for the height control ratings. The effect of motion or the rating results is also quite similar to those for height control. That is, motion had little effect for satisfactory FB ratings, but improved the ratings for test cases which were more difficult to control (i.e., those which were rated unsatisfactory and unacceptable with no motion). As for height control, the reason for the improved ratings with motion may have been the improved cues which resulted for heading. This effect would be expected to be more significant for heading control than for longitudinal and lateral control. This is because the visual display provides much better control cues for longitudinal and lateral control than for directional control. ## B. Control-Moment Usage Two of the three investigations related to yaw control-moment usage were based on data obtained with unlimited yaw moment available. The effects of $N_{\rm r}$ and control lags were evaluated in these two studies. The third study was concerned with the percent time the total yaw control command exceeded the installed moment. Only results for the turn subtask were considered in the control-moment-usage investigations. Very little yaw control moment was used for the other subtasks. #### 1. Yaw Rate Damping The effects of $N_{\rm r}$ on the 5-percent yaw moment exceedance levels are displayed in Fig. 56(a). As was the case for pitch, roll and height control, the 5-percent level for yaw moment decreases with increased damping. Again, it is apparent that with increased levels of stability augmentation, more efficient use is made of the available control moments. #### 2. Control Lags The percent-time reference yaw moment levels were exceeded was computed from the moment data for τ_{ψ} = 0.3 with N_r = -0.5 and for τ_{ψ} = 0.3 and 0.6 with N_r = -1. The moment levels exceeded 5 percent of the time are presented in Fig. 56(b). For both levels of N_r there was a significant increase in the 5-percent-exceedance value, N_{c5}, when a first-order lag of 0.3 sec was added to the control system. A further increase in N_{c5} was observed for a lag of 0.6 sec. The increase in N_{c5} is approximately 50 percent for the addition of τ_{ψ} = 0.3 sec with N_r = -1. The results in Fig. 53(b) indicate that this combination yields satisfactory flying qualities. If satisfactory levels of control lag can cause this large an increase in the yaw control-moment usage, it would appear prudent not to change the MIL-F-83300 specification for installed yaw moments. Without control lags the MIL-F-83300 requirements appeared somewhat larger than the yaw control moments found necessary for pilot acceptance in the UARL studies (Sections V.A.3 and III.A.3). ## 3. Control-Moment Limits The percent time that total yaw control-moment commands exceeded the installed moment limits are shown in Fig. 56(c). These percentages were computed from yaw control-moment-usage data for the moment limit values evaluated in the study discussed in Section V.A.3 ($N_{\rm C_m}=1.0~\overline{N}_{\rm C_5},~1.3~\overline{N}_{\rm C_5}$ and $1.6~\overline{N}_{\rm C_5}$ where $\overline{N}_{\rm C_5}=0.10$). As would be expected, the percentages decreased as the installed yaw control moment increased. Also, these results show that the yaw control-moment level which was acceptable to the pilots, $N_{\rm C_m}=1.3~\overline{N}_{\rm C_5}$, was exceeded 5 percent of the time. Recall that the reference, $\overline{N}_{\rm C_5}=0.10$, was the averaged 5-percent exceedance moment level for all the data measured during the turn subtask in the turbulence study (Section III.A.1), when essentially unlimited control moment was available. The larger 5-percent level from the yaw limit study, $N_{\rm C_m}=0.13$, may have resulted from the pilot's tendency to hold in large pedal inputs which exceeded the yaw control-moment limits. This was done in an attempt to command ircreased yaw control moment. For unlimited yaw control moments available the aircraft responded to these large inputs and the pilot did not hold the pedal command as long. #### SECTION VI # SUMMARY OF PRINCIPAL RESULTS AND RECOMMENDATIONS FOR FURTHER RESEARCH ## A. Flying Qualities Results Pertaining to the Development of MIL-F-83300 ## 1. Longitudinal and Lateral Control #### a. Turbulence Effects The Level 1 requirement for V/STOL pitch, roll and yaw dynamic response (paragraph 3.2.2) appears to provide aircraft dynamics which remain quite controllable for nominal increases in turbulence intensity. Pitch and roll control sensitivities selected by the pilots at the largest turbulence intensities considered ($\sigma_{ug} = \sigma_{vg} \approx 8.2$ ft/sec) remained well within the specification boundaries (paragraph 3.2.3.2) and were much closer to the minimum required levels than to the maximum limit. These results and previous UARL experience would indicate that the upper control sensitivity limits would result in aircraft response which might be difficult to control. and described the substitution of the state ## b. Control Lags and Delays The specification for control lags (paragraph 3.2.4) adequately separated unsatisfactory levels of first-order lags in pitch and roll control response from those which did not significantly degrade pilot ratings for Level 1 configurations (i.e., those that met the Level 1 requirement of paragraph 3.2.2 of MIL-F-83300) evaluated in this study. Pilot ratings also show that permitting a 0.1-sec delay in control response, as the specification does, is reasonable. However, limited results for second-order control lags indicate that the specification may not be sufficiently general to apply to second-order control lags. Control sensitivities selected in this study were generally near, and sometimes below, the minimum MIL-F-83300 boundary. It may be appropriate to lower both the minimum and maximum control sensitivity boundaries somewhat. #### c. Control-Moment Requirements The pitch and roll control-moment requirements from MIL-F-83300 (paragraph 3.2.3.1) generally equalled or exceeded those levels found to be necessary in this program for the Level 1 and 2 configurations considered (without control system lags or delays). Also, the specified control moments were generally not excessive. The addition of control system lags and delays increased the control moments found to be necessary for satisfactory ratings, and the wording of paragraph 3.2.2.1 also provides for this effect. However, the specification cortrol-moment requirements may be excessive for control systems with acceptable lags. ## d. Control Moments Through Stored Energy It appears that rotor-propulsion system angular momentum can be used to offset, to some extent, deficiencies in the installed control moments. However, additional research is required before consideration can be given to accounting for its effects in MIL-F-83300. ## e. Inter-Axis Motion Coupling Pitch and roll rate coupling and control coupling can cause an appreciable deterioration in V/STOL flying qualities. Results from this study indicate that rate coupling levels must be no larger than $M_{\rm p} \approx 1$ and/or $L_{\rm q} = -1$ per sec for satisfactory flying qualities. Control coupling ratios should be limited to $M_{\rm ba}/L_{\rm ba}$ and/or $L_{\rm be}/M_{\rm be}$ less than about 0.25. The control sensitivity specification does not have to be changed to account for motion coupling. AND THE PROPERTY OF PROPER ## f. Independent Thrust-Vector Control Thrust-vector control independent of aircraft attitude can be an acceptable substitute for conventional attitude control when properly implemented. For large aircraft with Level 1 pitch and roll dynamics, the use of ITVC should provide satisfactory flying qualities while enabling the pilot to avoid pitch (or roll) attitudes that could lead to ground strikes. For aircraft having large drag parameters, ITVC would enable pilots to control position without the large attitude changes and trim attitude angles that result for such aircraft with conventional position control through attitude. However, position control for such aircraft would remain moderately difficult, even with ITVC. ## g. Rate-Command/Attitude-Hold Control It appears that rate-command/attitude-hold control as mechanized in this study provides no particular benefits over conventional rate and attitude stabilized control systems for hover and low-speed flight operations. Also, the dynamic response portion of MIL-F-83300 (paragraph 3.2.2.1) does not define characteristics which provide satisfactory dynamic response for rate-command/attitude-hold control systems. However, the specification for control sensitivities (paragraph 3.2.3.2) does encompass those sensitivities needed with rate-command/attitude-hold control. ## 2. Height Control ## a. Z_{W} and Thrust-to-Weight Ratio There is a definite interaction between $Z_{\rm W}$, T/W and height control flying
qualities for T/W less than about 1.05. This result supports to some extent the method used in MIL-F-83300 to specify Z_W and T/W (paragraph 3.2.5.1). However, MIL-F-83300 permits $Z_W = 0$ for $T/W \ge 1.10$, but results from the UARL program indicate that a minimum $Z_W = -0.25$ to -0.35 is necessary for Level 1 height control. Also, if this Z_W level is present, it would appear that the T/W boundary separating Level 1 and 2 flying qualities could be reduced. Height control sensitivities from this study were within the specification limits (paragraph 3.2.5.3) but were much closer to the minimum boundary than the maximum. ## b. Lags and Delays in Thrust Response The specification for lags and delays in thrust response (paragraph 3.2.5.2) appears reasonable in view of the UARL results. However, it does not account for the ability of increased Z_W to compensate for lag effects. ## c. Incremental Thrust Through Stored Energy Results indicate that the effects of incremental thrust through stored energy can alleviate, to an extent, deficiencies in installed thrust. However, these data are presently too limited to permit consideration of changes in MIL-F-83300 to account for its effects. ## Directional Control #### a. Yaw Rate Damping Results from this program indicate that the directional damping paragraph in MIL-F-83300 (3.2.2.2) which requires N_r = -1 for Level 1 flying qualities is reasonable. Also, the pilot-selected yaw control sensitivities, $N_{\delta r}$, almost matched the lower boundary values from paragraph 3.2.3.2. #### b. Control Lags and Delays The control lag specification (paragraph 3.2.4) should be modified to permit a longer time to attain maximum yaw acceleration, $t\dot{\psi}_{max}$. For acceptable control lags and delays, $t\dot{\psi}_{max}$ was as much as twice the MII-F-83300 limit (0.3 sec). ## c. Yaw Control-Moment Requirements The specification for yaw control moment (paragraph 3.2.3.1) requires control moments which are without exception larger than those found to be necessary in this program. However, the yaw control-moment requirements of the specification do not appear to be excessive. ## B. Control-Moment Usage ## 1. Longitudinal and Lateral Control Pitch and roll control-moment usage increases with turbulence intensity. However, the increase does not scale directly with turbulence intensity, apparently because there is a minimum level of control-moment usage which exists without turbulence due to the moment requirement for task performance, trim of the mean wind, and inadvertent pilot inputs. Speed stability is the aircraft/control system configuration parameter having the greatest effect on control-moment usage. The change in the 5-percent-exceedance moment levels for a threefold increase in speed stability was much greater than that for a factor of four change in drag parameter. Drag parameter may not have to be a consideration in the development of control-moment criteria. The change in control-moment usage with speed stability was also greater than that which resulted when aircraft pitch and roll dynamics deteriorated (accomplished by reducing the level of stability augmentation) from Level 1 to Level 3. Control-moment usage increased with decreasing level of augmentation which confirms that stability augmentation systems make more efficient use of control moment than does the pilot. Control lags had little effect on pitch and roll control-moment usage, and it may be possible to eliminate them from consideration in the development of control-moment specifications. Pitch and roll control coupling also had little effect on control-moment usage, but usage did increase with pitch and roll rate coupling. THE PROPERTY OF THE PROPERTY AND THE PROPERTY AND THE PROPERTY OF The low-speed flight task required of a V/STOL aircraft has been shown to have an appreciable effect on control-moment usage. The 5-percent-exceedance moment levels for the quick stop are as much as 1.5 times as large as those for hover. The expected task must be accounted for when defining requirements for installed control moment. Also, the installed total moment for pitch plus roll control must be sufficient to account for simultaneous control usage by the pilot. It cannot be assumed that pilots make independent pitch and roll control inputs. Finally, it appears that specifying levels for installed control moment by requiring that they equal those levels which the pilot would be expected to exceed 5 percent of the time is not acceptable. However, it may be that acceptable installed control-moment levels would correlate better with those levels exceeded a smaller percent of the time. #### 2. Height Control Thrust usage decreased with increased levels of height velocity damping. Lags in the thrust response increased thrust usage; this contrasts with the effect of lags on pitch and roll control-moment usage. With satisfactory levels of Z_W , installed thrust-to-weight ratios of 1.05 were seldom exceeded and T/W = 1.10 was never exceeded. ## 3. Directional Control Yaw control-moment usage decreased with increased yaw rate damping for the values of yaw rate damping tested, i.e., $|N_{\rm r}| < 1.0$. Moment usage increased with lags in the yaw response to control inputs, however. A CONTRACTOR A SECURITION OF THE SECURITIES T ## C. Effects of Flight Simulator Motion Cues on Pilot Ratings For longitudinal and lateral control the addition of flight simulator motion resulted in poorer pilot ratings than those assigned when the same test cases were evaluated without motion. This trend was evident for all cases, regardless of their flying qualities, i.e., whether or not they had been rated satisfactory, unsatisfactory or unacceptable without motion. For both height and yaw control, however, the addition of motion generally resulted in improved ratings for test cases which were rated unsatisfactory or unacceptable without motion. For cases rated satisfactory fixed base, the addition of simulator motion appeared to have little effect on the pilot's rating of height or directional flying qualities. ## D. Recommendations for Further Research It is recommended that the following research be conducted to obtain information pertinent to the further development of MIL-F-83300. - (1) Additional fixed- and moving-base flight simulator studies of control-power usage should be conducted. In these studies, the significance of aircraft, control system and task parameters would be further evaluated and the control-power specification would be tested in more detail. - (2) The ability of rotor-propulsion system stored energy to compensate for limits in installed control power should be investigated in more detail. - (3) Additional unconventional control systems such as on-off (bangbang) control and velocity-vector (TAGS) control should be evaluated to determine their attributes. Modifications to MIL-F-83300 to extend its coverage to these systems must be explored. Independent thrust-vector control should also be examined in more detail; it appears to be a promising concept, but was only given limited study in this program. | 1 2
BC4 BC5 BC2 BC6 S | CH AND ROLL | $\zeta = 0.6$ $\zeta = 0.4$ $\zeta = 0.2$ | 8 | 0 | | -0.8 -0.8 -0.8 -0.4 DAMPING FACTOR $-\zeta\omega_{\rm n}$ RAD/SEC | |--------------------------|-------------|---|---|----------------------|---|---| | BASIC CONF. BC1 | | DAMPING RATIO, $\zeta = 0.8$ | |
ЯЭ ФЭЧМАО
0.4 | 0 | -3.2 | Figure 1. Root Locations for UARL Basic Configurations THE PROPERTY OF O Figure 2. United Aircraft Corporation V/STOL Aircraft Flight Simulator Figure 3. Contact Analog Display for Hovering and Low-Speed Maneuvering Task | | SIMULATION | UA | RL | NORAIR | | |--------|---------------------------------|----|------------------|---------------|-------| | | SIMULATOR MODE | FB | мв | мв | | | | SYMBOL | 0 | 9 | 9 | | | o ug = | $\sigma_{\rm v_g}$ = 3.4 FT/SEC | | U _m = | 10 KTS FROM I | NORTH | *SEE NOTE ON LEVEL DESIGNATION SHOWN ON FIG. 1 Figure 4. Comparison of Averaged Pilot Ratings from UARL and Norair Simulations for Similar Configurations FIGURE 5. Representative Exceedance Plots Showing the Effects of Subtask on Control-Moment Usage Variations in Moment Level Exceeded Five Percent of Time for Two Pilots and Fixed- and Woving-Base Simulator Operation FIGURE 6. | - | | | | | | | | | | | | | |---|-----|----|-----|----------|-----|----|-------|----|----|-----|-----|-----| | | | | - | | | | | | 7 | | | 3 | | | 8C1 | | BC4 | 4 | 8C5 | 55 | BC2 | 2 | 8 | BC6 | 8 | BC3 | | | F.B | MB | 89 | MB FB MB | 8.4 | MB | FB MB | ΝB | FB | 2 | EB | MG | | | 0 | • | 0 | | 4 | 4 | 0 | • | D | • | , 4 | | * LEVEL APPLIES TO BASIC CONFIGURATIONS ONLY. DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES Figure 7. Variation in Pilot Rating with Turbulence Intensity | TURBULENCE INTENSITY INTERVAL | 3 4- | -5.8 | 5 R- | -そ.2 | 3.4 | -8.2 | |-------------------------------|------|------|------|------|-----|------| | SIMULATOR MODE | FB | MB | FB | MB | FB | МВ | | SYMBOL | O | • | ם | • | Δ | | * LEVEL APPLIED TO BASIC CONFIGURATIONS ONLY DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES, Figure 8. Effect of Pitch and Roll Dynamics Level on Degradation in Pilot Rating with Turbulence Intensity Figure 9. Power Spectrum of Open-Loop Attitude Response to Simulated Turbulence for Basic Configurations Figure 10. Power Spectrum of Open-Loop Position Response to Simulated Turbulence for Basic Configurations Figure 1%. Phase Lag of Pilot-Pitch (Roll) Open-Loop Dynamics for UARL Basic Configurations | 3 | EC3 | wB | 9 | |--------|-------------|----------------|-----------| | | a | FB | 7 | | | 926 | MB | Þ | | |)6 | FB | ۵ | | 2 | 2 | MB | • | | | BC2 | FB | \$ | | | 25 | , MB |
• | | | 808 | FB | ٥ | | | 4: | MB | 155 | | - | BC4 | FB | ۵ | | | | MB | • | | | 3C1 | FB | 0 | | LEVEL* | BASIC CONF. | SIMULATOR MOD€ | SYMBOL | * LEVEL APPLIES TO BASIC CONFIGURATIONS ONLY. DUE TO PARAMETEH VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. Dashed lines show mil-f--83300 bojndaries for acceptable $M_{\delta_{\phi}}$ boundaries based on specified minimum and maximum attitude response (normalized with control command magnitude) one second after control input Figure 12. Longitudinal Control Sensitivities from Turbulence Study | LEVEL * | | | | - | | | | 2 | | | | 9 | |----------------|-----|-----|----|-----|----|-----|-------|----|----|-----|----|--------| | BASIC CONF. | e | 801 | 8 | BC4 | Ä | BCS | B.22 | 2 | 9 | BC6 | ă | BC3 | | SIMULATOR MODE | F.B | MB | FB | MB | FB | MB | FB MB | MB | FB | MB | FB | ₩
B | | SYMBOL | 0 | • | o | | ٥ | 4 | 0 | • | ٥ | Þ | - | 1 | * LEVEL APPLIES TO BASIC CONFIGURATIONS ONLY. DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. DASHED LINES SHOW MIL-F-83300 BOUNDARIES FOR ACCEPTABLE L $_{\delta a}.$ SEE NOTE ON FIG. 12 , Figure 13. Lateral Control Sensitivities from Turbulence Study 100 Birth Control Cont | LEVEL * | | | | _ | | Γ | | ľ | | Γ | | | |----------------|-----|-----|----|-----|-----|-----------------|-----|----|-----|----------------|-----|-----| | BASIC CONF | 96 | BC1 | B | BC4 | BCS | <u>ر</u>
ابر | BC2 | 5 | BC6 | T _o | B | BC3 | | SIMULATOR MODE | EB. | MB | 82 | MΒ | F.B | MB | F.B | MB | F.B | 8 | E E | A A | | SYMBOL | J | • | 0 | | ٥ | 4 | 0 | • | D | • | 2 | • | * LEVEL APPLIES TO BASIC CONFIGURATIONS ONLY. DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES, Variation in Pilot Rating with Time Constant of First-Crder Lag in Control Response Figure 14. яч , эмітая толіч | LAG TIME CONSTANT INTERVAL | ე_ | 0.3 | 0.3 | -0.6 | 0 | 0,6 | |----------------------------|----|-----|-----|------|----|----------| | SIMULATOR MODE | FB | мв | F8 | MB | FB | МВ | | SYMBOL | 0 | • | ۵ | 2 | Δ | A | ^{*} LEVEL APPLIES TO BASIC CONFIGURATIONS ONLY. DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN CONERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. Figure 15. Effect of Pitch and Roll Dynamics Level on Degradation in Pilot Rating with First-Order Lag Time Constant Figure 16. Phase Lags from First-Order Lags and Delays Figure 17. Magnitude and Phase Characteristics for Pilot-Pitch (Roll) Open-Loop Dynamics with Second-Order Control Lags O PILOT B, FIXED BASE, CONF. BC1 NATURAL FREQUENCY OF SECOND-ORDER LAG, $\omega_{n_{\tilde{e}}}$ = $\omega_{\tilde{n}_{\tilde{a}}}$ = 3.33 EXCEPT WHERE INDICATED IDENTICAL LAGS PRESENT IN BOTH PITCH AND ROLL CONTROL RESPONSE Figure 18. Pilot Ratings for Second-Order Lags in Pitch and Roll Control Response | ¥ 13/13 1 | | | | | | | | į | | | | | |-------------------|----|--------|-----------|--------|--------|-----|---|-----|---------|------|---|-----| | | | | - | | | | | | | | | | | BASIC CONE | ì | , | | | | | | | | Ī | | ا | | STORE COINT. | ۵ | - | <u></u> ≍ |
52 | ĕ | 802 | ĕ | BC2 | ĕ | BC6 | | BC3 | | # # OF P 11 (PAIN | | | | I | | | | | | | | | | SIMOLATOR MODE | FG | W
W | æ | ž | n
n | Σ | ű | MR | ou
u | οV | C | ٤ | | | | | | | | | 2 | 2 | 2 | 2 in | C | 25 | | SYMBOL | 0 | • | 0 | | 4 | 4 | 0 | 4 | Þ | • | - | • | | | | | | | | | | • | | | 3 | ŧ | | | | | | | | | | | | | | ı | * I EVEL APPLIES TO BASIC CONFIGURATION ONLY DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. FIRST-ORDER LAG TIME CONSTANT, $au_{ m 0}$ = $au_{ m a}$ - SEC Longitudinal Control Sensitivity Results Showing the Effects of First-Order Control Lag Figure 19. | * 14/11 | | | | - | | | | •• | ~ | | | 3 | |----------------|-----|-------|----|-----|----|----------|-----|-------|----|-----|------|-----| | | _ | | | | | | | | | , | à | 000 | | BASIC CONF. | BC1 | - | ă | BC4 | ă | BC5 | BCZ | 7.7 | Ä | BC6 | اُهُ | 2 | | | | | | | | | | | | : | - | 5 | | SIMULATOR MODE | 18 | FB MB | FB | MB | 85 | MB
MB | £ | FB MB | FB | MB | ņ | 2 | | | | | | | | [| • | • | C | • | 7 | 1 | | CYMBOI | 0 | • | | ۹ | 4 | 4 | > | • | > | • | 3 | | * LEVEL APPLIES TO BASIC CONFIGURATIONS ONLY, DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. Figure 20. Lateral Control Sensitivity Results Showing the Effects of First-Order Control Lag THE PROPERTY OF O | BASIC CONF. | В | 21 | ВС | 4 | В | C5 | В | 26 | |----------------|----|----|----|----|----|------|----|----| | SIMULATOR MODE | FB | МВ | FB | MB | FB | МВ | FB | MB | | SYMBOL | 0 | • | | | Δ | lack | 0 | • | s este dippes and verantific for opinistical printing distributions and the constant of co FIVE PERCENT EXCEEDANCE LEVELS, CM5 FOR PITCH, ROLL, AND YAW, RESPECTIVELY, WERE: | BASIC CONF. | BC1 | BC4 | BC5 | BC6 | |-------------|-------|-------|-------|-------| | PITCH , MCS | 0.330 | 0.820 | 0.380 | 0.890 | | ROLL, Cos | 0.380 | 0.605 | 0.360 | 0.750 | | YAW, NCS | 0.110 | 0,175 | 0.150 | 0.170 | ## (a) LEVEL 1 CONFIGURATIONS FOR UNLIMITED CONTROL MOMENTS (b) LEVEL 2 CONFIGURATION FOR UNLIMITED CONTROL MOMENTS Figure 21. Pilot Rating Results for Control Moment Limits | LAG TIME CONSTANT | τ _e = | τ ₈ ≃ 0 | τ _e = τ _a | = 0.3 | $ au_{ m e}$ = $ au_{ m a}$ | = 0.6 | |-------------------|------------------|--------------------|---------------------------------|--------------|-----------------------------|-------| | SIMULATOR MODE | F8 | МВ | FB | MB | FB | MB | | SYMBOL | 0 | • | | | Δ | A | 0.1 SEC DELAY IN CONTROL RESPONSE FOR ALL TEST CASES ${\tt CM}_{5} \colon {\tt AVERAGED}$ 5 PERCENT EXCEEDANCE MOMENT LEVELS FOR PITCH, ROLL, YAW (a) BC1 $\overline{\text{CM}}_5$ = 0.330, 0.380, 0.110 RAD/SEC² FOR PITCH, ROLL, YAW, RESPECTIVELY CANAL PROPERTY OF THE (b) BC5 $\overline{\text{CM}}_5$ = 0.380, 0.360, 0.150 RAD/SEC² FOR PITCH, ROLL, YAW, RESPECTIVELY Figure 22. Pilot Ratings Showing the Effects of Control Moment Limits with First-Order Control System Lags | BC4 BC5 BC6 | FB MB FB MB | | |-------------|-------------|----------| | BC1 | FB MB | 0 | | BASIC CONF. | Sir., MODE | S /MB:)L | $\Delta M_c;$ Maximum pitch control moment available through stored energy. Equal to 30 percent of installed control moment, $M_{c_{\rm m}},$ unless noted otherwise, Change in Pilot Rating with Level of Incremental Pitch Control-Moment Available Through Stored Energy Figure 23. The second secon Time Histories of Pitch Control-Moment Usage for the Maneuvering Task with Incremental Moment Available Through Stored Energy Figure 2^{4} . | $M_{\delta_a}/L_{\delta_a} = -L_{\delta_e}/M_{\delta_e}$ | | 0 | 0. | 2 5 | 0. | 50 | |--|----|----|----|------------|----|----------| | SIMULATOR MODE | FB | МБ | FB | МВ | FB | MB | | SYMBOL | 0 | • | | - | Δ | A | CONFIGURATION BC1 EXCEPT WHERE OTHERWISE INDICATED * CONTROL AND RATE COUPLING EFFECTS ADDITIVE, I'.E., CONTROL INPUTS CAUSE ATTITUDE RATES WHICH INDUCE COUPLING MCTICM IN SAME DIRECTION AS CONTROL COUPLING, UNLESS OTHERWISE NOTED DASHED LINES INDICATE MIL-F-83300 MINIMUM SENSITIVITY BOUNDARY, SEE NOTE ON FIG. 12. ## (b) LONGITUDINAL CONTROL SENSITIVITIES, $M_{\delta_{\,e}}$ # (c) LATERAL CONTROL SENSITIVITIES, L_{δ_a} Figure 25. Effects of Inter-Axis Motion Coupling on Pilot Rating and Control Sensitivities | LEVEL*
BASIC CONF. | BC1 | - 5 | BC4 | 4 | 2
8C2 | 2 3 | |-----------------------|-----|----------------|-----|----|----------|-----| | SIMULATOR MODE | 8 | FB MB FB MB FB | FB | MB | F8 | ₩ | | SYMBOL | 0 | • | | | 4 | 4 | THRUST VECTOR ANGLE, Y, DISPLAYED ON CONTACT ANALOG AND INSTRUMENT PANEL UNLESS NOTED OTHERWISE * SEE NOTE ON 1279LS SHOWN GN FIG. 20. Pilot Rating Results from the Study of Independent Thrust-Vector Control Figure 26. PILOT RATING, PR AND CONTRACTOR OF THE PROPERTY Figure 27. Magnitude and Phase Characteristics for Pilot-Pitch (Roll) Attitude Open-Loop Dynamics with Rate-Command/Attitude-Hold Control (b) SPEED-STABILITY AND DRAG PARAMETERS OF CONFIGURATION EC4 Figure 28. Pilot Rating Results for a Rata-Command/Attitude-Hold Control System #### (a) SPEED-STABILITY AND DRAG PARAMETERS OF CONFIGURATION BCI | NATURAL FREQUENCY, Wn | 2. | 80 | 3.4 | 14 | 6 | 30 | 7, | 40 | |-----------------------|----|----|-----|----|----------|----|----|----| | SIMULA OR MODE | FB | MB | Fβ | MB | FΒ | MB | FB | MB | | SYMBOL | ם | | Δ | A | ◊ | • | Δ | | DASHED LINES SHOW MIL-F-83300 BOUNDARIES. SEE NOTE ON FIG. 12. (b) SPEED-STABILITY AND DRAG PARAMETERS OF CONFIGURATION BC4 Figure 29. Control Sensitivities from the Study of Rate-Command/Attitude-Hold Control | . | | 1 | DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY
FLYING QUALITIES OF TEST CASES. | (c) COMBINED, (IMC + ILC I) 5 | | | | | | | | SUBTASK | |----------------|-------------|--------------------|--|-------------------------------|-----|---|-----|---|-------|-------------|---|----------------------------| | 8.2 | ٧ | LEVEL 1* | RIATIONS, THE
EST CASES. | | 2.0 | Ī | 7.6 | 1 | 1.2 |
0.8
 | 4. | NX
O | | 5.8 | | ~ 0.33 | AMETER VA | D. | | | | | | | A.S. | | | 3.4 | 0 | Mug * - Lvg * 0.33 | DUE TO PAR | (b) ROLL, TC5 | | | | | | | | YOS HOV
SUBTASK | | RMS TURBULENCE | SYMBOL | CONFIGURATION BC1 | SIC CONFIGURATION ONLY. DUE TO PARAMETER VARIATIONS, DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. | | 2.0 | | 9: | | 1.2 - |
8.0 | 4.0 | , MY | | L | | | # LEVEL APPLIES TO BASIC | (а) РІТСН, МС _Б | 2.0 | 1 | 1.6 | | 1.2 – |
0.8 | 0.4 - =================================== | 0 XM XQS HOV TU
SUBTASK | Effect of
Turbulence on Five-Percent Exceedance Moment Level for a V/STJL Configuration with Small Response to Turbulence FIGURE 30. FEAST EXCEEDED 2 SERCENT OF TIME — RAD/SEC $_{\rm S}$ FIGURE 31. Effect of Turbulence on Five-Percent Exceedance Moment Level for a V/STOL Configuration with Large Response to Turbulence TO THE CONTRACT OF THE PROPERTY AND THE PARTY AND THE PROPERTY OF THE PARTY | | | | iEC | (c) COMBINED, (IMCI + ILCI)5 | 1 | | | | | XM YM XQS YQS HOV TU
SUBTASK | |-------------|------------------------------------|--------|----------------------|--------------------------------|---|-------------------|--|---------------------------------------|--------|---------------------------------| | BC4 | 1.0 | | = 0, = 3.4 FT/SEC | 2.0 | | 1.6 | 1.2 | 8.0 | 9.0 | 0 | | BC5 | 0.33 | 0 | CONFIGURATIONS Oug = | (b) ROLL, TC ₅ | | | | | 7 | M YQS HOV TU
SUBTASK | | BASIC CONF. | M _{u9} = -L _{v9} | SYMBOL | BC5, BC4 LEVEL 1 | | | 1.6 | 1.2 | 008 | | O | | | | | - | (a) PITCH, MC ₅ | | \QAF -
6.
1 | MOMENT NEEDED TO TRIM MEAN C) 1.2 TO TRIM MEAN C) WIND EFFECTS | S S S S S S S S S S S S S S S S S S S | DB P P | XM XQS HOV TU SUBTASK | THE PERSONAL PROPERTY OF THE PROPERTY OF THE PERSONAL P FIGURE 32. Five-Percent Exceedance Moment Levels Showing the Effect of Aircraft Speed-Stability Parameters THE CONTRACTOR DESIGNATION OF THE CONTRACTOR | ,- | | | 1 | V TO II + LOWIT GENERAL CO. | 5 (22) (23) | | | | | | | 40 | M YM XOS YOS HO'/ TU | SUBTASK | |-------------|---------------------------------|--------|---------------------------------|-----------------------------|---------------------------------|------------------|----------|-------|--------|-----------|-------|-----------------------|----------------------|---------| | BC5 | -0.30 | 0 | = 0 _{vg} = 3.4 FT/SEC | | 2.0 | | 1.6 | 1 | 1.2 | _1_ | 0.8 | -, 4.
-, 1 − 1 − − | NX
NX | | | BC1 | -0.05 | 0 | 5 | T 100 | D) note, cGs | - | | | | | | ? P | YOS HOV TU | SUBTASK | | BASIC CONF. | χ _υ = Υ _ν | SYMBOL | BC1, BC5 LEVEL 1 CONFIGURATIONS | | 2.0 | 1 | 1.
6. | | 1.2 | .l | 8.0 | | J W.X | | | | 1 | | | 21 110±10 (1) | 2.0 (a) F11CH, INC ₅ | | 1.6 | | 1.2 | | - 8.0 | 4.0 | 0 XM XQS HOV TU | SUBTASK | | | | | | | | 2EC ₅ | \QAR | - 3WI | . OF T | SCENJ | 934 9 | rever exceeded | | | FIGURE 33. Five-Percent Exceedance Moment Levels for V/STOL Configurations Having Different Drag Parameters Exhibiting the Three MIL-F-83300 Levels of Flying Qualities FIGURE 34. Five-Percent Moment Levels for Three V/STOL Configurations | | | 3.4 FT/SEC | , THE LEVEL SHOWN
S. | (c) COMBINED, (IMC! + ILC!) | |-------------|--------|----------------------------|---|-----------------------------| | 0.6 | ٧ | 0 ug = 0 vg = 3.4 FT/SEC | VARIATIONS | (c) C(| | 0.3 | | 1,33 | PARAMETER
DUALITIES C | | | 0 | 0 | Mus =-Lv9 = 0.33 | NLY. DUE TO | . TC5 | | CONTROL LAG | SYMBOL | CONFIGURATION BC5 LEVEL 1* | * LEVEL APPLIES TO BASIC CONFIGURATION ONLY. DUE TO PARAMETER VARIATIONS, THE LEVEL SHOWN GENERALLY DOES NOT DESCRIBE FLYING QUALITIES OF TEST CASES. | (b) ROLL, CC ₅ | | | J | CONFIGURA | * LEVEL APPLIES TO
GE | (a) PITCH, Mc5 | Effects of Control Lags on Five-Percent Moment Levels for Configuration with Low Response to Turbulence FIGURE 35. Effects of Control Lags on Five-Percent Moment Levels for Configuration with Moderate Response to Turbulence FIGURE 36. THE WAS A MINISTER OF THE PROPERTY PROP | 0.50 | MB | • | |------------------|----------------|--------| | 0 | F8 | ٥ | | 0.25 | MB | | | 0 | S. | C | | | MB | • | | | FB | 0 | | Mb /Lb = Lb /Mbe | SIMULATOR MODE | SYMBOL | CONTROL AND RATE COUPLING EFECTS ADDITIVE (SEE FIG. 25 FOR EXPLANATION) CONFIGURATION BC1 Effect of Rate and Control Coupling on Pitch 5-Percent Exceedance Control-Moment Level Figure 37. | E C | 8C3 | Q | | (c) COMBINED, (IMCI + ILCI)5 | | 4 | 9 | A A A | 4 | | 4 | | | XM YM XGS YGS HOV TU
SUBTASK | |-------|-------------|---------|--------------------------------|--------------------------------|-------------------|--|-------------|-------------|-----|---|------------|------|---------------------------------------|---------------------------------| | 2 | 928 | Δ | | 2.0 | | 9. | | 1.2 | | 0.8 | | 0.4 | _L | <u>_</u> ^ | | | BC2 | | SEC | Γ | | ······································ | | | | | | 1 05 | · · · · · · · · · · · · · · · · · · · | | | | BC4 | ٥ | = 0 _{vg} = 3.4 FT/SEC | (b) ROLL, TC5 | | | | | | 256 | | | ì | YOS HOV TU
SUBTASK | | - | BC5 | 0 | ້ຶ່ງວ | 2.0 [b | | .6.
 | -1 | 1.2 | | 0.8 | 2 0 | 4.0 | | NA N | | | BC 1 | 0 | | | , | | | | | | | | | | | rever | BASIC CONF. | SYMBOL | | 2.0 (a) PITCH, MC ₅ | ZSEC _S | - γΑΑΡ\
1,3
1 | WE, | он 1.2
- | Z C | 5 PERC
5 0.8 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − 2 − | EDED | -2 | CEAE | O XM XQS HOV TU SUBTASK | Effect of Subtask on Five-Percent Control-Moment-Exceedance Level FIGURE 38. | WC5+ LC5 | ٥ | SEC | JSLY O O SUMED | | |----------------|--------|---|---|-----| | Mc5+Lc5 | ٥ | ر _{لو} = را _{رو} = 3.4 FT/SEC | ALL PITCH AND ROLL INPUTS ASSUMED TO OCCUR SIMULTANEOUSLY D MC AND LC ASSUMED INDEPENDENT | | | (IMC1 + 1LC1)5 | 0 | ASK | \ \X_2 | | | CONTROL MOMENT | SYMBOL | HOVER SUBTASK | ACTUAL SIMULTANEOUS US/GE | 789 | | CO | | | 1.6 | 0.4 | | | | | OF TIME - RAD/SEC2 | | on the second of the property of the second Comparison of Actual Five-Percent Simultaneous Usage Moment Levels for Hover with Hypothetical Maximum and Minimum Values for these Levels Figure 39. CONFIGURATION **LEVEL EXCEEDED 5 PERCENT** | BASIC CONF. | 60 | C1 | В | C4 | 80 | 25 | | 3C6 | |----------------|----|----|----|----|----|----|----------|-----| | SIMULATOR MODE | FB | MB | FB | WB | FB | MB | FB | МВ | | SYMBOL | O | • | 0 | * | Δ | A | ◊ | • | CM5: AVERAGED 5-PERCENT EXCEEDANCE MOMENT LEVELS FOR PITCH AND ROLL WITH UNLIMITED CONTROL MOMENT AVAILABLE #### (a) PITCH CONTROL #### (b) ROLL CONTROL Figure 40. Percent Time Total Moment Command Exceeded Installed Pitch and Roll Control Moments for Flight with Limited Available Moments | TYPE OF POSI- | CONVENTIONAL | INDEPENDENT THRUST VECTOR CONTROL | |---------------|--------------|-----------------------------------| | SYMBOL | 0 | | | | | | THE THE PROPERTY OF PROPER THUMB-SWITCH THRUST-VECTOR CONTROL, $\dot{\gamma}$ = 20 DEG/SEC, AND CONTROL-STICK ATTITUDE CONTROL FOR INDEPENDENT THRUST-VECTOR CONTROL # (a) CONFIGURATION BC1 ned of the second of the contraction of the second #### (b) CONFIGURATION BC4 Figure 1-1. Comparison Between Pitch Control-Moment 5-Percent Exceedance Levels for Independent Thrust-Vector Control and Conventional Fosition Control A CONTROL OF THE PROPERTY T Five-Percent Pitch Control-Moment Exceedance Levels for Rate-Command/Attitude-Hold Control System Figure 42. AND THE PERSON OF O | PILOT | CALSPAN B* | UA | FL | |-------------------|------------|----|-----| | SIMULATOR
MODE | MB | FB | M.B | | SYMBOL | • | | | X NO SIMULATED WINDS FOR CALSPAN PILOT EVALUATION and order as exercises of the services Figure 43. Change in Pilot Rating of Height Control with Height Velocity Damping Figure 44. Phase Lags for Pilot-Height Open-Loop Dynamics at Several $\mathbf{Z}_{\mathbf{W}}$ Levels | SIMULATOR
MODE | FB | MB | |-------------------|----|----| | SYMBOL | 0 | ** | T/W > 1.15 ## (a) CONFIGURATION BC1 Figure 45. Height Control Sensitivity Results Showing the Effects of Height Velocity Damping | TYPE OF DAMPING | 2 | $^{\prime}$ | 1 _d + 2 _w | م _ح | | 2 _{wT} + 2 _w
2 _{ws} + 0 | 2_{w_1} 2_{w_3} 2_{w_5} 0 | | | 2wT = Zw | 2w, Z " T" | | |-----------------|------
---|---------------------------------|----------------|-------|---|-----------------------------------|-------------|----------|----------|------------|---| | PILOTS | CALS | CALSPAN B* | | UARL | CALSE | CALSPANB* UARL | 'n | RL | CALSPANE | ANB | UARL | 7 | | SIMULATOR MODE | FB | MB | FB | MΒ | | FB MB | FB | FB MB FB MB | F.B | MB | F.B | ₩ | | SYMBOL | 0 | • 0 | δ | • | 0 | | Ъ | X | ۵ | • | ধ | × | Zws " SAS HEIGHT VELOCITY DAMPING Zwa - AERODYNAMIC HEIGHT VELOCITY DAMPING LEVEL, SOUNDARIES FROM MIL-F-83300 $Z_{w_{\rm F}}$ = TOTAL HEIGHT VELOCITY DAMPING PR = 2.5-Q LEVEL 1 REGION * Um = 0, $\sigma_{\mathrm{u_g}}$ = $^\circ$ 1,7 FT/SEC FOR CAL.SPAN PILOT EVALUATIONS _ PR = 3.5 LEVEL 2 REGION -PR = 45 PR - 5 REGION 9.0--1.0 80--0.4 -0.2 Pilot Rating Results Showing the Interaction Between Height Velocity Damping and Thrust-to-Weight Ratio Figure 46. THRUST-TO-WEIGHT RATIO, T/W 1.02 0, **5** TOTAL HEIGHT VELOCITY DAMPING, 1.03 大学の一大学のことがあることのできないというというない **BEB REC** | T/W | 1. | 02 | 1.0 | 05 | 1. | 10 | |----------------|----|----|-----|----|----|----------| | SIMULATOR MODE | FB | МВ | FB | МВ | FB | MB | | SYMBOL | 0 | • | D | | Δ | A | CONFIGURATION BC1 $$Z_{w_T} = Z_{w_a} + Z_{w_s} = -0.25$$ FOR ALL.CASES and the second of o Figure 47. Comparison of Pilot Rating Results for Aerodynamic Versus Stability Augmentation System Height Velocity Damping | LEVEL OF Z _{WT} | - (| 0.25 | -0 | .35 | - G. | 50 | |--------------------------|-----|------|----|-----|------|----------| | DELAY, dh | | 0 | 0 | 0.1 | i | 9 | | SIMULATOR MODE | FB | MB | 76 | FB | FB | MB | | SYMBOL | 0 | • | 0 | ۵ | Δ | A | CONFIGURATION BC1 $$T_{iW} = 1.05$$ $Z_{WT} = Z_{W_2} + Z_{W_S}$ WHERE $Z_{W_2} = Z_{W_S}$ Figure 48. Pilot Rating Results Showing the Interaction Between First-Order Lag Time Constant and Height Velocity Damping | PILOT | | 8 | B | | |----------------|------|----|----|----| | Δτ/w | 0.13 | | 0. | 28 | | SIMULATOR MODE | FB | мв | FB | MB | | SYMBOL | 0 | • | | | CONFIGURATION BC1 $Z_{W_T} = Z_{W_S} = -0.35$ T/W = 1.02 ΔT/W: MAXIMUM THRUST INCREMENT AVAILABLE THROUGH STORED ENERGY Figure 149. Change in Pilot Ratings Which Results from Incremental Thrust Available Through Stored Energy onoring normal and a second source of the contraction of the second seco THE THE PERSON AND REPORTED FOR THE PERSON OF O Figure 50. Effect of $Z_{\rm WT}$ on Incremental Thrust 5-Percent Exceedance Levels, (T/W-1)5, Computed for Incressed Thrust Cormands SUBTASK XM YM XQS YOS HOV XQS YQS HOV $\tau_{\,\mathrm{h}^{\mathrm{s}}}$ 0 except where indicated (a) $$Z_{W_T} = -0.25$$ to enclose the enclosure of the contraction (b) $Z_{w_T} = -0.50$ Figure 51. Percent Time Installed Thrust-to-Weight Ratio Limits Exceeded | LAG TIME CONSTANT | 0 | 0.3 | |-------------------|---|-----| | SYMBOL | 0 | | CONFIGURATION BCI T/W = 1.10 FIXED BASE on and the control of the superstance supers $$Z_{w_T} = Z_{w_a} + Z_{w_s} = -0.25$$ WHERE $Z_{w_a} = Z_{w_s}$ Figure 52. Effect of First-Order Thrust Lags on Incremental Thrust 5-Percent Exceedance Levels Computed for Increased Thrust Commands | SIM. MODE | FB | мв | |-----------|----|----| | SYMBOL | 0 | • | N $_{_{ m V}^{^{\pm}}}$ 0.005 CONFIGURAT. ON BC1 EXCEPT WHERE INDICATED UNLIMITED YAW CONTROL MOMENT (b) COMBINED EFFECTS OF YAW LAGS, τ_{ψ} , AND DELAYS, d. ψ , AND N_r | | l _r | -C | .5 | - | 1.0 | |---|----------------|----|----|----|-----| | s | IM. MODE | FB | WB | FB | MB | | S | YMBOL | 0 | • | 0 | | UNLIMITED YAW CONTROL MOMENT Figure 53. Pilet Rating Results Showing the Effects of Yaw Rate Damping and lags and Delays in Yaw Control Response near serve and proposition of the following proposition of the Figure 54. Phase Lag for Pilot-Yaw Open-Loop Dynamics at Several Levels of $\rm N_{\rm T}$ | N _r | -0 | .5 | -1 | .0 | |----------------|----|----|----|----| | SIM. MODE | FB | MB | FB | МВ | | SYMBOL | 0 | • | | | CONFIGURATION BC1 $\overline{\rm N}_{\rm c_5}$ = 0.10 RAD/SEC² = YAW CONTROL MOMENT 5-PERCENT EXCEEDANCE LEVEL WITH UNLIMITED MOMENT AVAILABLE Figure 55. Effects of Yaw Control-Moment Limits on Pilot Rating Figure 56. Yaw Control-Moment-Usage Results #### APPENDIX A #### SUMMARY OF FLYING QUALITIES DATA FROM UARL PILOT EVALUATIONS This Appendix contains a detailed tabulation of the flying qualities data (pilot ratings and pilot-selected control sensitivities) obtained from the flight simulator evaluations with UARL pilots. Table A-I identifies the studies conducted in the UARL program and lists the parameters for the cases evaluated in each investigation. It also provides a key to the tables which summarize data in Appendices A, B and C. Tables A-II through A-VIII list results from the longitudinal and lateral control studies in the following sequence: A-II, turbulence effects; A-III, control lags and delays; A-IV, control moment limits; A-V, control moments through stored energy; A-VI, inter-axis motion coupling; A-VII, independent thrust-vector control; and A-VIII, rate-command/attitude-hold control. Flying qualities results from the height control studies are listed in Tables A-IX and A-X as follows: A-IX, velocity (amping and thrust-to-weight ratio interactive effects; and A-X, thrust lags and delays and incremental thrust through stored energy. Finally, pilot ratings and pilot-selected sensitivities from the directional control studies are summarized in Table A-XI. and the sound of t Preceding page blank #### TABLE A-I #### SUMMARY OF PARAMETERS FOR CASES EVALUATED AND KEY TO TABLES SUMMARIZING DATA P: Indicates Parameter Varied During Study F: Control Sensitivity Fixed 5: Control Sensitivity Selected by Pilot UL: Unlimited | Strate | furameters | Chana | Basic
Com. | | | Longi | todine. | 1 | _ | | | Vertical | | | Direct | ionel | | > yirr
qualities
hesults | Filot
arrents | Control
Homent or | |--|--------------------------------------|------------|--|--|---|---|------------------------------|-----|-----|------|-----------------|----------|------|---------------|--------|-------|------|--------------------------------|------------------|---| | 3030 | ,
and the second | (2216 | | Not | y _u | ×ι | ۲,9 | No. | ×8e | مہرہ | 2~ _T | T/V | Zác | x, | ** | Nos | ₹8r | Table Vo. | "al le Le. | Table Fo | | Effects of
Turbulence | مالأ . عداق | 71-718 | হুদ্ধ হৈ ত্ব
জন্ম
হুদ্ধ হৈ ত্ব
জন্ম | 0.33
1.0
1.0
1.0
1.0
0.33 | -9.85
-9.85
-9.80
-9.80
-9.80 | -1.7
-11
-2.0
-3.0
-1.7
-1.1 | 24.5
27.7
24.2
22.5 | 12 | s | Þ | -1 | 1.15 | -3.2 | o,000 | -1 | t's. | 0.10 | /*II | 9-1 | C-I | | lags and
delays in
pirch and
roll control | | 121-1227 | BCI
through
BOS | | Page 44 T | n-nê | | υz | s | 3,4 | -1 | 2.25 | -3 | 0.002 | -1 | 12 | 6.50 | A-III | F-17 | r-rt | | Fisch, roll
and yes
memorat
limits | Hoga, Toga Hogg
7a ° €
Ca ° da | 1947-19455 | 3CL
3C+
9C5
8C6 | | Same as 1 | n-n3 | | P | \$ | 3,4 | -1 | 1.1% | -3.2 | 0.000 | -, | Ł | 0.50 | A-77 | 8-111 | om. | | Pitch costrol
mement
through
stored evergy | Megalla,
Fi | 121-1513 | 301
804
305
306 | | Save 40 1 | n-në | | ρS | s | 3,4 | -1 | 1.15 | -3.2 | 0.000 | -: | ห | 0,20 | 4.eV | P=T\ | ontrol
moment not
measured | | Inter-exis
section
coupling | Μρ, ίκ,
Μος∕ίκα,
Ιος∕Μος | 1/21-108 | 30 | | E930 AS 1 | n-na | | เน | ε | 3.4 | -1 | 1.15 | -3.2 | 6.0x <i>e</i> | -1 | vı | 0.00 | A-VI | 9- 0 | (**** | | Independent
longitudinal
thrust-vector
oxtrol | 9, 'An | in-in- | BC2
BC4 | | (sme as TI-TIS | | | | | 3.4 | -1 | 1.15 | -3.2 | 0.002 | -1 | vı. | o 70 | A-VII | 301 | C-Y | | Rate commend/
attitude bold | Hq, 13, Hg, Lg | DC-1815 | BC1 | 0.33 | -0.05 | P | 7 | | | Γ | | Ī | | | | | | | | | | control | ζ, ω ₂ | | 304 | 1,0 | -0.20 | 7 | , | '7- | * | 3.4 | -1 | 1.13 | -3.2 | e.occ | -1 | UL. | 0.29 | A-VIII | \$-V:I | C-VI | | Velocity
darping and
thrust-to-
weight ratio
effects on
he'ght
control | Zwg, Zwg,
Zw _g , T/S | E31-H328 | 801
PG | 0.53
4.5 | -0.05. | -1.7
-3.0 | -1.7 | v | , | 3.4 | , | ř | s | 0.002 | -1 | υL | 0.20 | A-IX | \$-AIII | C-VI: | | lage and
delays in
thrust
response | rh • 3h | ктт-кт8 | 101 | 0.33 | -0.05 | -1.7 | 4,2 | ત | , | 3.4 | , | 1.05 | ŝ | 0,002 | -1 | UL | 0,20 | A+3 | f-DX | C-VII | | incremental
thrust
through stored
mency | ΔT/W, τ _Δ | P71-d55 | NC1 | 0.23 | -0.05 | -1.7 | 4.2 | UL | , | 3.4 | F | , | 5 | 0.002 | -1 | 17 | 0.20 | A-X | 9-TA | Thrust
usage
data not
seasured | | Directional
control
studies | Ny, Kop. | 01-1C2 | 34°2 | 0.33 | -0.05 | -1.7 | -2.5 | V2. | , | 3.4 | -1 | 1,15 | -3.2 | 0,005 | , | , | 5 | IX-A | P-X | C-A111 | Symmetrical configurations - lateral derivative has seen value as corresponding longitudinal derivative. Also, if a longitudinal term is treated as a parameter, the corresponding lateral term is as well. enter the second of ^{2,} Longitudinal and laceral turbulence levels always eyeal throughout this progress. ^{3.} Nitch and roll control lage along a equal. Mitch and roll control delays also always equal. Vind simulation included a mean wind from the morth, U_k = 10 kts. Maximum roll moment, I_{Ok}, unlimited. TABLE A-II FIXING QUALITHES RESULTS FROM THE STUDY OF THE EFFECTS OF TURBULENCE INTENSITY Vertical and Directional Parameters Listed in Table A-I Pilot Comments Given in Table B-I | | Æ | 2,0 | 2.0 | 3.0 | 3.0 | 6.0 | 6.0 | |--------------------------|-------------------|---|---|---|----------------------------------|---|----------------------------------| | Moving Base | LG | 0.2 ⁴ £ | 0.243 | 0.301 | 0.297 | 0.360 | 0.280 | | | Μδe | 0.333 | 0.298 | 0.380 | 0.375 | 0.320
0.136 | <i>1</i> 0n°0 | | | 岳 | 2 2 2 2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.00 v.0 | 00000 | 14.0
5.0
6.0
8.0 | 4.5
5.0
7.0
9.0
9.0 | 8.0
8.0 | | Fixed Base | I.S. | 0.308
0.304
0.239
0.358 | 0.205
0.248
0.248
0.365
0.291 | 0.331
0.225
0.380
0.388
0.434 | 2.5°0
0.350
0.350
0.350 | 0,285
0,242
0,352
0,352 | 0,427
0,419
0,373
0,352 | | | Αδe | 214.0
205.0
204.0
204.0 | 0.307
0.306
0.358
0.307
0.367 | 0.333
0.274
0.452
0.616
0.513 | 544.0
0.373
0.345
0.445 | 0,342
0,298
0,298
0,598
0,598 | 0.359
0.449
0.439
0.467 | | Filot | | 4884 | < m m < m | < m m < m | 4 m m m | 4 4 4 4 | < m m m | | | σ_{Vg}^2 | 3.8
8.8
4.8 | 3.E
5.8
6.5
6.5 | 4. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. | 3.t
5.8
8.2 | 3,4
7.
5,8
8,2 | 3°5
8°5
8°5 | | | 9 ⁰ 68 | 3.k
5.8
8.2 | 4. E. 2. | ες
ες
ες
ες
ες | 3,4
5,8
8,2 | 3,1
5,8
8,2 | 3,4
5,8
8,2 | | Complex | -244+3va | -0.81±11.85 | -0.81÷11.85 | -0.35±10.64 | -0,30±J1, ⁴ 7 | -0.32±11.48 | 0,08±J0,68 | | Real | | -0.13 | -0.29 | -2.5 | -0.5 | -0.65 | 2.2 | | | θ_{W} | 2°7 | 2° † | -1.7 | -2,5 | -2.5 | 0 | | ity
Eves ¹ | ь
М | 7.1- | -1.7 | -3.0 | -1.1 | -1-1 | -2.0 | | Stability
Derivatives | x _u | -0.05 | -0.20 | -0,20 | -0.05 | -0.20 | -0.05 | | | Muß | 0.33 | 0.33 | 1.0 | 1.0 | 1.0 | 1.0 | | Basic | | D _M | BGS |)
104 | BC2 | 908 | BC3 | | 3,40 | | ដ. អព្. | 4. DE: | F: 82: | 91. 11. | 50.
10. | 90.
11.
18. | Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. Mean wind, U_B = 10 kts. Mean wind, U_m = 10 kts. TABLE A-III LONGITUDINAL AND LATERAL FLYING QUALITIES RESULTS FROM THE STUDY OF CONTROL SYSTEM LAGS AND DELAYS Vertical and Directional Parameters Listed in Table A-I Pilot Comments Civen in Table B-II | | | Æ | | | 5.5 | | | 30 | 0.7 | | Ç
v. | | 2.5 | | 7.0 | 30.0 | | | 0., | 5.0 | | 0: | | | | | 2.5 | | | 2.5 | ? | |-------------------------|----------------------------|-------------------|---------------------|-------|--------|-------------|-------|-------|-------------|---------|-------------------------------------|-------|-------------|------------|--------|---------------|-------------|---------|----------------------|-------------|---------|--------|-------|-------------|------|-------|-------------|----------|-------------|----------------|--------| | | Moving Base | .;. <u>*</u> | | ~ | 0.795 | | | 3.260 | 0.345 | | 0.329 | | 238 | | 9.319 | 0.310 | | | 0.3% | 0.337 | | 0.375 | | | | | 0.25% | | | 0.280 | -
- | | | × | ئم | | | 0.372 | | | 0.7.B | 0.418 | 9 | 0,421 | | 0.395 | • | 1,51,0 | 0,300 | | | 6.33 | 0.3% | | 0,473 | | | | | 3.307 | | | 0.336 | • | | | | 1:1 | 3.0 | | 3.0 | 2.0 | C C | 0 | 2.0 | ທີ່ເ | o 0 | 3.0 | 0.7 | 2.0 | 0.0 | ς ς.
δ. ο. | 0.7 | 2.5 | 9.0 | 9.3 | 0.0 | 0 0 | 2.0 | 0.7 | 10.0 | 0 0 | 0 | 3.0 | ပ <u>ို</u> | 0.0 | : | | | bed fare | 14,1 | 0.2149
0.203 | 0.222 | 0.28.9 | 0.247 | 0,732 | 0.363 | 0.329 | 0.340 | () ()
() ()
() ()
() () () | 0.40 | 0.280 | 0.25 | 0.270 | 0.373 | 0.348 | 0.193 | 0.350 | 0.351 | 0.455 | £ 8 | 95.0 | 0.22 | | 0.320 | + | 0.37. | 0.20 | 0.33 | | | | • | , e | ည်း
(၁.၁
(၁.၁ | 0.330 | 0.339 | 0.30 | 82.0 | 0.130 | ५८५°० | 0.330 | 0.1.37 | 1.161 | 0.409 | 0.324 | 0.347 | 0.307 | 227.0 | 0.314 | 0.33
1.34
1.34 | 0.127 | 987.0 | 2 6 | 0.422 | 3.2.5 | 0.30 | 0.352 | 0.00 | 0.357 | 0.332 | 0.399 | , | | ہ۔ | | 1,2ct | z .c | ۵ ۰۰ | æ | . ع. | a 4 | 8 | ત | « : | q •< | ια | £ | < 1 | m - | < si, | a | < | с а с. | E. | ۷ ، | x. « | : m | r. | a. | ಷ್ಣ | T T | <u>~</u> | В | B | • | | 7 | Cont. 11
Nelgys | ئ | | |
 | | | | • | | | | • | | | | | | | | | | | ľ | | | 130 |
 | 0.1 | 0.1 | | | ore | 92 | ų. | <u> </u> | | | • | | | | | | _ | , | | | | • | | | · | | v. re- | | , | | | c | 3 | ٥. | 0.1 | | | T. ut | cond-Croer | en, ten | ' | | | • | | | | | | | , | | | | | | | , | | | | 3.33 | 3.33 | 20 co | | | | , | • | | Comments Civen in Table | Schtr | ζξα | ı | | | ' | | |
, | | | | • | | | | | | | • | | | | 04.0 | 0.72 | 3 8 | | | | , | 1 | | າເຮັດ | irst-brder
Control lage | ž. | | 9.6 | | רי. | n 4. | = | ٥.٢ | ۳.
د | 9. | : | 0.3 | ۳ <u>.</u> | : ` | ; =
; | 0.1 | 6.3 | ٥.د | 1.0 | ۳.
د | 9.0 | | ٠ | | | U | 0.3 | 0.3 | ၁ ^၈ | | | ordiner | irst
Contro | ئر | 0.1 | . 0.0 | - | 7.0 | n 9 | = | r.0 | ; | 0.0 | - | 0.1 | ۳.
د | | 2 - | 0.1 | ۳;
٥ | 9.0 | 0.1 | °.3 | 9,0 | - | • | | | ٥ | o.3 | 0.3 | 0 00 | | | 7.1.00 | Complex | 5. "- | -0.61.11.05 | | | -0.81:51.75 | | | -0.33±30.64 | | | | -2,30:51,47 | | | | -0.32*31.48 | | | -0.08±30.68 | | | | -c.81±13.85 | | | -0.81±51.95 | | | -0.30*11.47 | | | | heal | Poot | -0.13 | | | 62.0- | | | 5.3 | | | | -0.5 | | | | -0.65 | | | -2.5 | | | | -0.13 | | | -0.13 | | | -0.5 | | | | | θ_{κ} | -4.2 | | | 2.7 | | | -3.7 | | | | -2.5 | | | | -2.5 | | | 0 | | | | -4.2 | - | | 3.4- | | | -2.5 | | | | ıty
ives | > ⁵ | 4°t- | | | -1.7 | | | -3.0 | | | | 4.1. | | | | -2.1 | | | -2.0 | | | | -1.7 | | | 7.1. | | | 7.7- | | | | Carality
For vatives | ن | £.3- | | | -0.30 | | | 02.0- | | | | -0.05 | | | | -0.20 | | | -0.05 | | | | -0.05 | | | -0.05 | | | -0.05 | + | | | | ^w uč | 0.33 | | | 0.33 | | | 0.1 | | | | 1.0 | | | | 2.0 | | | 1.0 | | | | 0.33 | | | 0.33 | | | 1.0 | | | | Basic | cont. | 덡 | | | ه
گ | | | 켮 | | | | 3C3 | | | | BC6 | | | සූයු | | | j | BCI | | | 301 | | 1 | ខ្ល | - | | | | -ase- | 1111 | 113 | | 111 | Ĕ | | 11. | 3 = | 11.9 | - | LETO | 1 - | 21.12 | - | 1113 | 7 : | 1115 | 9111 | 1 - | EL13 | - | 6111 | 120 | 1122 | 11.23 | Treat. | 2 | 1126 | | A TO THE POST OF T standard wind simulation; $\sigma_{\rm u_g} = 3.4$ ft/sec, $u_{\rm m} = 10$ kts. Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. Lag and delay affect both the control and stability augmentation system inputs. TABLE A- IV Horning the contract of co FLYING QUALITIES RESULTS FROM THE STUDY OF PITCH, ROLL AND YAW CONTROL MOMENT LIMITS Vertical and Directional Parameters Listed in Table A-I Pilot Comments Given in Table B-III | i í | ž | 3.0 | 7.0 | 2.4
0.10 | 6.9 | 3.0 | | |---|-------------------|--|--------------------------------------|--|--|--|----------------------------------| | Pering Face | - Sa | 0.234 | 0.268 | 0.348
0.334 | 0.325 | 0.245 | | | You | γδ _e | 0.301 | 0.290
0.297 | 0.1.26
0.428 | 0.393 | 0.348 | | | | E | 700000
00000 | 3.0 | ი დ დ უ ფ ტ
ა ი ი რ რ რ ი | 7,0
10,0
10,0
10,0
10,0
10,0 | 3 3 4 4 4 4 6
0 0 0 0 0 0 0 0 | 3.5 | | Pixed Bane | ¹.δ _R | 0.20
0.20
0.20
0.20
0.20
0.20
0.20 | 0.239 | 0.194
0.395
0.204
0.404
0.761
0.104 | 0.351
0.187
0.351
0.353
0.353 | 0.264
0.264
0.275
0.312
0.325
0.255 | 0.323
0.323
0.33C | | ã. | ۰، _ګ و | 0.301
0.307
0.296
0.240
0.387
0.357 | 0.350 | 0.260
0.413
0.215
0.432
0.304
0.431 | 0.387
0.215
0.367
0.228
0.357
0.266 | 0.339
0.339
0.346
0.371
0.384
1.366 | 0.368
0.388
0.433 | | PAlot | | घदणस्थास | an et an et | 人乃入马人乃异 | 30人数人员人员 | ភ< ១១១១១ | 200 | | Control
Delay | v _i | ' | - | r | t | 0.000 | 0.1 | | <u> </u> | , યું | • | | • | t . | 0.0
1.0
1.0
1.0
1.0 | 0.0
0.0 | | First-Orier
Control Lage | 6 | | | 1 | , | 6.0
6.0
6.0
6.0
6.0
6.0 | 0.6
0.6
0.4 | | First | ي | r | • | 1 | • | 0.3
0.3
0.6
0.6 | 9.0
9.0 | | ente | Ncm | 0.120
0.132
0.144
0.120 | 0.120
0.150
0.18e | 0.175
0.193
0.211
0.229 | 0.170
0.187
0.204
0.221
0.288 | 0.132
0.144
0.156
0.132
0.144
0.15C | 0.165
0.189
0.199 | | Maximur
Control Momente
Available | <u>.</u> | 0.415
0.457
0.408
0.408 | 0,280
0,360
0,440 | 0.605 | 0.750
0.825
0.900
0.975
1.050 | 0.457
0.458
0.540
0.457
0.457
0.458 | 0.400
0.440
0.440
0.480 | | Con | M.
E. | 0.306
0.396
0.432
0.595 | 0.30c
0.3 ⁶ 0
0.467 | 0.620
0.902
0.984
1.066 | 0.890
0.979
1.068
1.157
1.256 | 0.356
0.356
0.369
0.369
0.369 | 0.420
0.467
0.50÷ | | Complex | - July - 1448 | -0.81:11.85 | -0.81:31.85 | -0.35*30.64 | -0.32=,11.48 | -0.81±33.85 | -0.81.11.85 | | Real | 2 | -0.13 | -0.29 | 2.5 | -0.65 | e. o- | -0.29 | | | θ_{K} | ¿*-{- | -4.2 | -1.7 | -2.5 | 4.2 | 2.1 | | lty
ives ² | S, | -1.7 | -1.7 | -3.0 | 1.1 | -1.7 | -1.7 | | Stability
Derivatives | ٧ | 35 | -0.20 | 0.20 | -0.20 | ٠٠.
م. وج | -0.20 | | | Mus | 0.33 | 0.33 | 1.0 | 1.0 | 0.33 | 0.33 | | Basic | | ರುಜ | 202 | B QL | BOX | BCI | BC5 | | Cose 1 | | 141
122
123
123
124 | 554: FX | IMS
IMO
IMO
IMI | ud2
rd3
rdh
rmb
rmc
rmc
woc | 10.07
10.08
10.09
10.09
10.00
10.00 | 1M23
1M24
1M25 | 1. Standard wind simulation. $\sigma_{\rm Ug} = \sigma_{\rm V_F} = 3.4$ ft/sec, $U_{\rm H} = 10$ kts. ^{2.} Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. TABLE A-V and the control of th LONGITUDINAL FLYING QUALITIES RESULTS FROM THE STUIN OF INCREMENTAL CONTROL MOMENTS THROUGH STORED ENERGY Vertical and Directional Parameters Listed in Table A-I Pilot Comments Given in Table B-IV | 9 2 | E. | 5.5 | 4.0 | | 5.5 | | 1,0 | | | |---|-----------------|-------------------|------------------|-------------------------|-------------|-------------|-------------------------|--------------|-------| | Moving Sase | Lba | 3,5% | .192 | | .333 | 346. | .337 | | | | Wov | ¥6 _€ | 452* | .25 ⁴ | | .372 | .381 | 385. | | | | e, | PR | | 2.0 | 5°4
6°0
0°2 | | | 7.0
8.0 | 9.0 | 8.0 | | Fixed Base | Lôn | 0.251 | | | 0,230 | | 0.333
0.241
0.294 | 0,338 | 0.134 | | | 3δ€ | 0.320 | 0.303 | 0.310 | 0.300 | 0.373 | 0.291 | 0.246 | 0.254 | | Mlot | | e A e | дд | a n e | | | ከላከ | Α¤ | В | | rent, | 7. | 0.05 | 0.20 | 0.00 | | 0.0 | c.20 | 0.10 | 0.20 | | Control-Moment,
Stored Energy
Parameters ³ | ΔMΔ | 30,30 | % %
% % | 8,8,8,8,° | 0 | 30,00 | | 308 | 30. | | Contra
Stor
Per | X ^E | 0.356 | 0.356 | 0.300
0.340
0.340 | 206.0 | | . 0.
20. | 6.979 | 0.979 | | Complex
Roots | -Cantaga | -0.81±31.85 0.356 | | -0.81±31.85 | -0.35±10.64 | | | -0.32±511,48 | | | Real
Root | | -0.13 | | -0.29 | 2.5 | | | -0.65 | | | | Ş | 2.4-2 | | 2.4 | 1.7 | | | -2.5 | | | lty
lves ² | ¥, | -1.7 | | -1.7 | -3.0 | } | | -1,1 | | | Stability
Derivatives ² | χŽ | 6.0 | | -0.20 | 8 | | | -0.20 | - | | | M.R. | 0.33 | | 0.33 | 0 - | | | 1.0 | | | Basic
Conf. | | 덦 | | Po3 | 50 | } | | B06 | | | Case | | (83
92
1 | | 1.85
1.86
1.87 | - S51 | 621
0131 | LCSJ | 1812 | E1313 | proprieta symp agent some is seen an extreme and extreme the extreme and extre ^{1.} Standard wind simulation; $\sigma_{\rm ug} = \sigma_{\rm g}$ = 3.4 ft/sec, $U_{\rm m}$ = 10 kte. 2. Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. 3. Stored energy effects were only simulated in the pitch axis. Roll and yaw control moments were unlimited. TABLE A-VI LONGITUDINAL AND LATERAL FLYING QUALITIES RESULTS FROM THE STUDY OF RATE-COMMAND/ATTITUDE-HOLD CONTROL, Vertical and Directional Farameters Listed in Table A.I Pilot Comments Given in Table B-VII | | Æ | | 2.5 | | | | | 3.5 | | | 3.0 | | | 2.0 | | | 4.5 | | 3.0 | |--|-----------------|---------------|-------------|---------------|-------|-------------|-------------|-------------|--------------|-------------|-------|-------------|-------------|-------------|------------|-------------|-------------|-------------|----------| | Moving Base | Lδa | | 3.498 | | | | | 969.4 | | | 383 | | | 5.274 | | | 3.7% | | 2.69 | | × | ηδ _e | | 3.414 | | | | | 4.182 | | | 5.532 | | | 2.178 | | | 3.756 | | 5.010 | | | ů. | 1 | ۲. | 0.0 | 2.0 | 5.0 | ٥.
 | ?: | C.4 | 3.0 | | 4.5 | 5.0 | 3.5 | 3.0 | 0.0 | 3.0 | 3.0 | • | | i ixed Base | 1, Sa | ٥٠٠٠٠ | 0.17.0 | 0.00 | 0.884 | 3.340 | 1,528 | 2.508 | 2,420 | 3.31.4 | | 0,864 | 1.868 | 1.3% | 2.284 | 1.372 | 1,912 | 3.228 | | | .** | ાંજુ | 0.812 | 204.2 | 0,044. | 0.03 | 3.640 | 1.792 | 2.588 | 3.044 | 3.960 | | 3611 | 2,152 | 1.663 | 2.504 | 1.632 | 3,708 | 3.756 | | | Pilot | | æ | 'n | < | មា | æ | a | æ | ∢ | 4 | В | œ, | ω | ä | æ | n | m | 4 | æ, | | tio and
equency | ij. | 5.3 | 6.3 | e. c. | : | 6.3 | 3.44 | 6.32 | 6.33 | 7.43 | | 0.4 | 2.0 | 0.1 | 2.0 | 0 | 5.0 | 7.43 | 1 | | Pumpluk Patio and
Netural Frequency | 3 | 0.35 | 0.16 | 0.73 | = | o.39 | 0.87 | 0.47 | 0.63 | 0.67 | : | 842.0 | 0.200 | 0.500 | 0,400 | 0.750 | 0.610 | 0.670 | L | | Complex | in: :"m;- | -0.98±32.64 | -1.00:36.24 | -1.98:11.98 | = | -2.00:16.00 | -2.99:31.73 | -3.00:35.57 | -1,-00:14.90 | -5.00:35.50 | : | -0.99±13.87 | -0.99 J5.32 | -1.97±33.45 | -1.97*4.54 | -2.97:32.61 | -2.98134.06 | -4.99:45.51 | | | Real
Root | | <i>∞</i> 0.0- | -0.058 | -0.093 | : | -0.058 | -0.079 | -0.058 | -0.058 | -0.055 | : | -0.28 | -0.26 | -0.27 | +0°0- | -0.27 | -0.25 | -0.22 | Ξ. | | دري . | θ;; | 8 - | 07- | 8 - | : | 07- | 4 | O7- | 04- | -50 | = | -16 | -25 | -16 | -25 | -1¢ | -56 | -50 | <u>.</u> | | rivatives? | γď | 2 - | ٠ | . | = | 77 - | 9 | 9 • | æ
• | -50 | | - 2 | 0 | .:t
 | | 9 | 9 - | 2 | • | | Stability Der | χn | -0.05 | | | | | | | | | | -0.20 | | | | | | | | | Ste | Kug | 0.33 | | | | | | | | | | 1.0 | | | | | | | | | Basic
Conf. | | BCI | | _ | | | | | | | | 70g | | | | | | | | | Case ¹ | | LRI | 1.82 | LR3 | = | 78.7 | LRS | 1.86 | LR7 | 1.R8 | | LR9 | IRIO | 181 |
1812 | 1813 | IRG! | LR15 | | ^{1.} Standard wind simulation; $\sigma_{U_{\rm S}} = \sigma_{v_{\rm E}} = 3.^4 \ {\rm ft/sec}, \ U_{\rm m} = 10 \ {\rm kts}.$ MERCHANIST CONTRACTOR CONTRACTOR ^{2.} Symmetrical configurations - lateral derivative has same value as corresnonding longitudinal derivative. TABLE A-VII LONGITUDINAL FLYING QUALITIES RESULTS FROM THE STUDY OF INDEPENDENT THRUST-VECTOR CONTROL Vervical and Directional Parameters Listed in Table A-I Pilot Comments Given in Table B-VI | | | | _ | | | | | | | 7 | _ | | |-------------------------------------|-------------------|-------------------------|-------|-------------|----------------------|-------------|----------------|-------------|----------|----------|-------------|-------------| | 6. | Æ | 4.5 | 3.0 | 5.5 | 4.0 | | 5.5 | - | | | | | | Moving Base | L.Sa | 272°0 | 0.242 | 0.286 | 0.286 | | 0.335 | | | | | | | oķi | 90
00 | 0.331 | 0.314 | 628°0 | 628.0 | | 0.338 | | | | | | | | F. | 2.5
4.0
4.0 | 3.5 | 14.5 | 3.5 | 5.0 | 4.5 | 1.0
2.5 | 0,00 | 3 | 10.0 | 10.0 | | Fixed Base | Ιδα | 0.286
0.242
0.242 | 0,286 | 0.286 | 0.286 | 0.335 | 0.242
0.335 | 0.242 | 0,242 | 0,542 | 0.286 | 0.335 | | 11 | MSe | 0.329
0.314
0.314 | 0.329 | 0.329 | 0.3%
0.3%
0.3% | 0.338 | 0.314 | 0.314 | <u> </u> | | N.A. | 9 Y Y | | 2 | | < 6 6 | m | e e | 1 < A | m « | e e | e e | | å | æ | a | | tor | ુ કેંદ્રિયું
જ | • | | - | | , | | , - | 4 4 4 | 7 | 1 | ,- | | Thrust Vector
Control Parameters | 7. × | | | | | | | 1 (| , rv | SI
SI | 5 | , | | Thu
Contr | 3 | 5.10 | 2 | 20 | 18. | νď | • & | 20 | 1 1 | • | 1 | ľ | | Complex | 2000
-₹401 | -0.81±11.85 | | -0.35±10.64 | | -0.30±31.47 | | -0.81±11.82 | | | -0.35±30.64 | O 305 41 h7 | | Real | 3 | -0.13 | | -2.5 | | -0.5 | | -0.13 | | | -2.5 | 2 0 | | | g)
Y | č.1 | | -1.7 | | 5.5- | | 7.2 | | | -1.7 | 3 0 | | ity
ives? | ž | -1.7 | | -3.0 | | -1.1 | | -1.7 | | | -3.0 | 7 | | Stability
Derivatives? | × | -0.05 | | -0.20 | | -0.05 | | -0.05 | | | -0.20 | 150 | | | Muß | 0.33 | | 1.0 | <i>37</i> | 1.0 | | 0.33 | | | 1.0 | 6 | | Basic | | D _E | | BC4 | | සු | | E E | | | 컱 | 8 | | - | eg go | 111 | 153 | 캠 | ric
rie | LT7
L18 | 617 | 11105 | | EH3 | ηCIT | į | 1. Standard gust simulation; $\sigma_{u_g} = \sigma_{v_g} = 3.^{\rm h}$ ft/sec, $v_m =$ 10 kts. 2. Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. 3. Thrust-vector thumb-switch control, conventional attitude control. ii. Thrust-vector control with stick, thumb-switch attitude control.5. Thrust-vector angle displayed on instrument panel only. 6. Not applicable - see Ye for longitudinal thrust rotation control sensitivity. TABLE A-VIII LONGITUDINAL AND LATERAL FLYING QUALITIES RESULTS FROM THE STUDY OF INTER-AXIS MOTION COUPLING Vertical and Directional Parameters Listed in Table A-I Pilot Comments Given in Table B-V | | | | | _ | | | | | | | | | | |-------------------------------|-----------------|--------------|-------|-------|-------|-------|-------|-------|-------|-------|--------------------|--------------|------------| | | Œ. | | 3.5 | _ | | | | 2.5 | | 0.1 | | | | | Moving Base | LSa | | 0.291 | | | | | 0.371 | | 0.360 | | | | | | [%] Åe | | óηξ.0 | | | | | უ92°0 | | 0.310 | | | | | | 꾮 | 0.4 | 3.5 | 6.5 | 2.5 | 3.0 | 2.5 | 3.5 | 0.1 | 4.5 | 7.5 | 6.5 | 6.5 | | thed fase | LSa | 0.332 | 0.293 | 0.356 | 0.323 | 0.299 | 0.338 | 0.283 | 0.290 | 0.284 | 0.358 | 0,373 | 0.3% | | 1 | Мδс | 0.385 | 0.359 | 0.386 | 0.376 | 0.362 | 0.362 | 0.322 | 0.313 | 0.316 | 0. ⁴ 12 | 0,142 | 0,446 | | Pilot | | ٧ | ıΩ | A | n | æ | < | Δì | 4 | æ | æ | B | ದ) | | ٠, | LSc/MSc | 0 | = | c | : | -0.25 | -0.50 | = | -0.25 | Ξ | -0.50 | -0.25 | 0.25 | | Motien Coupling
Farameters | Ma Taa | 0 | = | 0 | = | 0.25 | 0.50 | : | 0.25 | = | 0.50 | 0.25 | -0.25 | | Mot | Ьų | 2- | ± | 7 | : | 0 | 0 | = | ٩ | : | Ţ. | ¿- | ٩ | | | Мр | c | | -7 | : | 0 | 0 | = | Q | = | . | 2 | 0 | | Complex
Roots | -{w, 3w, | -0.411,11.85 | | | | - | | | | | | -0.304,11.47 | | | Read
Root | | -0.13 | | | | | | | | | | -0.5 | | | رى | У.д | 2.4. | | | | | | | | | | -2.5 | | | rivative | Mq | -1.7 | | | | | | | | | | -1.1 | | | Stability Derivatives? | χ¤ | -0.05 | | | | | | | | ~ | | 50.0- | | | St4. | Mue | 0.33 | | | | | | | | | | 1.0 | | | Basıc
Conf. | | ಭ್ಯ | | | | | | | | | | 278 | | | Case 1 | | TOT | = | ន្ទ | | 553 | 101 | : | 33 | = | 200 | 1,71 | 851 | 1. Standard wind simulation; $\sigma_{u_{\overline{g}}} = \sigma_{v_{\overline{g}}} = 3.^{4}$ (t/sec, $U_{m} = 10$ kts. THE PROPERTY OF O ^{2.} Symmetrical configurations - Lateral derivative has same value as corresponding lengitudinal derivative. TABLE 4-IX essentation of the contraction o HEIGHT CONTROL FLYING QUALITIES RESULTS FROM THE STUDY OF THE INTERACTION BETWEEN HEIGHT VELOCITY DAMPING AND THRUS'L-TO-WEIGHT RATIO Directions, Parameters Listed in Table A-I Pilot Comments Given in Table B-VIII | Base | 꾮 | 7.0 | 0,1 | | 2,0 | : | | 0 | ? | , | 0 0 | , | 3 | 3,0 | | _ | : | ; | 0.3 | | 3.0 | , | ? | 3.5 | | | | ι.
(| } | ر.
د.ه | | |---------------------------------------|---------------|-------------|------------|-------|------------|--------|-------|-------------|-------|------|-----|------|-------------|------------------|-------|-------|---------------|--------------|----------------|--------|-----------|------------------|-----|-----------|-------|-----|-------|-------------|--------|-----------|--------------| | Moving Base | 2,8€ | 3,03 | 2,57 | | ,
, | ; | | 2 | ; | ç | 8. | 5 6 | 7 | 29.5 | ! | | ` | 8 | 3.24 | | 29*2 | 6 | 8 | 2.76 | | | | έ, | }
 | 2.7 | | | Вабе | IR | 9.0 | 2 A | 3.0 | ٥. | 7.0 | 8.0 | 0.0 | 0.1 | 0.5 | 0. | | , | ر
ا
ا
ا | 9 | 5.0 | 0.4 | , . | ٠ ٠ | 2.5 | 4.5 | વ્યું દ
વડે ઉ | 20 | 2 | 2,5 | 0 1 | 2.5 | 20.01 | 5.0 | 4.5 | 3.0 | | Fixed Base | 78€ | 3.14 | & A
& K | 3.0 | 3.50 | 3.0 | | | | | | | _ | | | | | | | | | | | | | | ~ | 0.0 | 9.8 | 3.28 | 3.23 | | | 1011 | < 13 | ×Ω | Ą | 4 ¤ | ¥ | 4 | < # | ? ∢ | ď | ឆ | m r | 3 - | < 10 | | : « | 4 | ng . | < = | ~< | z. | ۷. | n - | c m | ν: | m | ٧ | « β |) < | ф | < < | | | N/J | 76 | E : | 13 | <u>≓</u> | 8 8 | 3.0 | 8 8 | . 8 | 3.0 | : | 8 8 | 5 5 | S = | 3.3 | 5 | <u>ن</u>
ئ | : ; | 5 6 | 2.10 | : | 01.1 | | = | 1.10 | : | 1.10 | 5 * | T. | - | 14 H | | Height Daming.
Thrust-to-Weight | With Wallette | 0- | 5.T.O- | -0.25 | 0,00 | -0.15 | -0.25 | 0 % | 0.25 | 0,40 | = | 9,85 | 5 6 | () :
0 | 50.00 | 0 | £.6. | | 9 6 | इता ०- | r | -C.25 | : 0 | ÷ = | -0.25 | : . | -0.40 | 0= | 6.H.O- | = | -0.25 | | Hetgl
Thrus | 746 | c:= | -0.125 | -0.25 | 01:0- | -0.125 | 0 | ر
د
د | -0.25 | 0,0 | | 5.85 | ج
د
د | | c | -0.25 | -0.85 | | တို့ လို | 521.5- | = | 0: | : " |); =
} | -0.25 | | -0.40 | 0= | -0.125 | = | -0.25 | | Cemplex | | -0.81:31.85 | | | | | | | | | | | | | | | | | | | | | | | | | | -0.35±50.64 | | | | | Feu. | Root | -0.13 | -2.5 | | | | | | θ;; | 2.4- | | | | | | | | - | - | | | | | | | | | | | | | | | | | -1.7 | | | | | itty
ives ² | 5, | -3.7 | | | | | | | | | | | | | | | | ************ | | | | • | | | | | | -3.0 | | | | | Stability
Derivatives ² | , a | -0.05 | -0.20 | | | | | | 1,4E | 0.33 | 3.0 | | | | | Basic | Conf. | вст | BCt | | | | | - | Case | HZ1 | 22 " | HZ3 | HZH | 92H | HZ7 | HZ8 | HZ9 | HZH | ı | 2TZH | 1213 | 4Z74 | 2 | 127E | HZ17 | = | HZ13 | 17.20 | 7 - | FZ21 | = | HZ22 = | HZ23 | = | H224 | 11725 | 926н | = | HZ27
HZ28 | ^{1.} Standard wind simulation; $\sigma_{\rm ug} = \sigma_{\rm V_G} = 3.4~{\rm ft/sec}$, $U_{\rm m} = 10~{\rm ktg}$, no vertical gusts. TO THE PROPERTY OF PROPERT Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. ^{2.} Symmetrical configurations - lateral derivative 3. Total height velocity damping, Z_{np} - Z_{ng} + Z_{ng} TABLE A-X # HEIGHT CONTROL FLYING QUALITIES RESULTS FROM THE STUDIES OF CONTROL LAGS AND DELAYS AND INCREMENTAL THRUST THROUGH STORED ENERGY Directional Parameters Listed in Table A-I Pilot Comments Given in Table B-IX Control Lags and Delays (a) | | 9 | | Stabil
Derivat | ility
atives | - | Peul | Complex | | Pare | Incaeters | | | 10.12 | Fixed | Pare | Moving Base | Base | |-------------------|-------|------|-------------------|-----------------|----------------|-------|-------------|--------|--------|-----------|--------------|----------|-------|------------------|------|-------------|------| | Case ¹ | Corf. | rc | 'nX | ķ | θ _W | ,000, | *30 }- | , a . | 7w3 | i. | E. | e; | 2071 | $^{2}\delta_{c}$ | ı | Z.Se | 44 | | | 108 | 6.33 | -0.05 | -1.7 | 3*7" | -0.13 | -0.81:51.85 | -0.15 | -0.105 | 1.05 | 3.3 | c | 4 | 3,0 | 5; | ,
 | | | _ | | | | | | | | -0.165 | -0.125 | 7.0. | 6.3 | ٠, | μ. | | ۴. | 0. | 3.0 | | | | | | | | | | -0.175 | -0.17 | 1.03 | 0 | ; | < | | | | | | | | | | | | | | -0.174 | 'n | 1.05 | 0.3 | c | •< | | 3,0 | | | | | | | | | | | | : | • | = | | <u>.</u> | וני | _ | 0.0 | | | | | | | | | | | | -0.175 | -0.175 | 1.05 | 0.3 | 0.1 | •₹ | | 3.5 | | | | | | | | | | | | -0.175 | -0.175 | 1.05 | ٥ . و | 0 | < | | 2.3 | | | | | | | | | | | | : | = | z | : | = | æ | _ | 3.5 | | | | | | | | | | | | 0 | -0.35 | 1.05 | 0.0 | ٥ | æ | | 0 | | | | | | | | | | | | -0.25 | -0.25 | 1.05 | ပုံပ | 0 | ∢ | - | 2.5 | | | | | | | • | | - | - | | | - | • | - | | | | | | | # Incremental Thrust Through Stored Energy (a) | | Base : | Æ | 0.1 | | 3.5 | 9.0 | o•
7 | |---|---------------------------------------|---------------------------|-------------|-------|-------|-----------------|---------| | | Moving Base | 28c | 2.67 | | 88. | 2.67 | 2.67 |
| | Fixed Base | PR | | 0.7 | 3.0 | 3.5 | 3.5 | | | Fixed | $^{2}\delta_{\mathrm{c}}$ | | 9.0 | | | - | | | +01-4 | | ы | m | м | m | m | | | | 7∆ | ٥ | 0.10 | 0.20 | 0.10 | 0.05 | | | | T/W 4/T | 0 | o.13 | 0.13 | 0.28 | 0.28 | | | Parameters | T/W | 3,02 | 3.0 | 1.00 | 3,0 | 3.8 | | | Para | Z _{v.s} 3 | -0.35 | -0.35 | -0.35 | -0.35 | -0.35 | | , | | Z,48,3 | 0 | 0 | 0 | ٥ | 0 | | | Complex | -Çun ÷ 3wg | -0.81±11.85 | | | | | | | Real | | -0.13 | | | | | |) | | θ_{W} | 71.2 | | | | | | | 1ty
ives ² | М | -1.7 | | | | | | ! | Stability
Derivatives ² | Xn | -0.05 | | | | | | | | Mus | 0.33 | | | | | | | Basic | | BCI | | | | | | | Case). | | HS1 | HS2 | нѕз | HS ^t | RSS | Standard wind simulation: v_{ug} = o_{vg} = 3.^h ft/sec, U_m = 10 kts, no vertical gusts. Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. Total height velocity damping, 2_{vr} = 2_{va} + 2_{vs} TABLE A-XI and the second of o DIRFCTIONAL CONTROL FLYING QUALITIES RESULTS Vertical Parameters Listed in Table A-I Pilot Comments Given in Table B-X | Pase | 84 | 3.5 | | | | | | | 3.5 | | · | 5.0 | 4.5 | | | | , | : | ي.
ج. ج | | \$.5 | |--|---------------------------|--|-------------|-------------------------|-------|----------------|-----------|-------|---------|-------------|---------|--------------|---------------------------------------|------------|-------|----------|------------|----------|------------|-------|-------------| | "oving Pase | ٠ <u>٠</u> ٠ | 622°0 | | 9
9
9 | | 0.22.0 | | | 0.275 | 220 | 2.0 | 0.258 | 0.284 | | | | 200 | C., 3*/. | 0.291 | | 0.2% | | Base | 18 | 1 2 4 mg | 6.5 | 2 8 2 5
2 5 6
5 6 | 0.7 | 233 | 0.0 | 0.0 | n | ر
د
د | . 0 | ٠
٠ | 5.5 | 9. | 0.4 | ر
س | 0 4
1 1 | • | , w | 3.0 | 2.0 | | Fixed Base | 1,8,1 | 0,20
0,25
0,255
0,285
0,285
0,285 | 0.312 | 0.270 | 0.235 | 0.550 | 0.248 | 0.294 | 0.313 | 0.258 | 0.57 | 0.237 | 2.300 | 0.238 | 0.238 | 0.233 | 2000 | 250 | 0,306 | 0.287 | 0.306 | | | 10111 | व्यक्त्र | £ | મત < લ | ۷. | e. e. | æ. æ. | æ · | < & | ٠ ; | G -1. | <i>α</i> , . | ∢ ಜ | 2 | æ | α | < n | ٠. ٠ | c 15 | « | ga
Ga | | and | φ¢ | co= o= | O | 0
1'0
0 | 0.1 | . 0 | ;; 0 | ٥.، | o = | 0.1 | c | . (| 7.0 | 0 | 0 | Ç I | 0 = | • |) 2 | J | = | | , beluy | 7 | 00:0: | b | (°) | 0.3 | 9.0 | 0.0 | 0 | ۳.
ش | S | 9.0 | = `, | • • • • • • • • • • • • • • • • • • • | ٥ | ೮ | 0 | 0 = | |) <u>:</u> | 0 | Ξ. | | langing, lee, Joluy and
Moment Livit larameters | N.C.r. | ." | T. | - 2 | | | | ~- | | | | | | 0.10 | 0.13 | ٠.
د | 07. | 51 | g - | 91.0 | <u>.</u> | | Your. | r r | 0
-05
-1.0 | -1.0 | 5.6-
5.6-
5.6- | -0.5 | -0.5 | 2.0 | -1.0 | o.; | 0.7 | -1.0 | ٤ ; | C . | 5.0- | -0.5 | ري
دي | 0.: | - | ? : | ٠,٠ | : | | Comples. | 400fts
- \$\langle no. | -0.81:51.85 | 74,16,50-0- | 98,18,18,0- | | | | | | | | | | 6.31=51.45 | | | | | | | | | Real | Roots | -0.13 | -0.50 | -0.13 | | | | | | | | | | -0.13 | | | | | | | | | | θ _W | ?•
• | -K.5 | -i | | | | | | | | | | ٦, ١,٠ | | | | | | | | | I th | 'n. | -1.7 | 7.7 | -1.7 | | | | | | | | | | -3.7 | | | | | | | | | Stability
Ferivatives | اند | -0°05 | -0.05 | ٠٥٠
- د. وج | | | | | | | | | | -0.05 | | | | | | | | | | zan, | 0.33 | 1.0 | 0.33 | | | | | | | | | | 0.33 | | | | | | | | | | į į | 3,00% | 0.005 | 0,005 | | | | | | | | | | 0.005 | | | | | | | | | Baric | Cenf. | BC1 | BC? | ដូ | | | | | | | | | | FCL | | | | | | | | | | Case | 38" 8: | 큠 | -38E | 80 | <u>. &</u> | om
Lig | 띭 | g. | 716 |
D15 | E | 976 | 740 | 910 | 617 | & <u>=</u> | | 7 = | 255 | 5 |). Standard wind similation $\sigma_{\rm th_s} = \sigma_{\rm v_g} = 3.^{\rm h}$?t/sec, (m - 10 kts. ^{?.} Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. #### APPENDIX B ### SUMMARY OF PILOT COMMENTS FROM UARL PILOT EVALUATIONS This Appendix presents edited pilot comments for the flight simulator lest cases evaluated by UARL pilots. The comments are tabulated for each case according to the subtasks performed by the pilots. For each subtask, comments were solicited according to the questionnaire shown in Table IV. Pilots also made additional comments as they felt necessary. The comment tables parallel the flying qualities data tables of Appendix A. That is, for each data table in Appendix A there is a corresponding comment table in Appendix B. The comments from the longitudinal and lateral control studies are summarized in Tables B-I through B-VIII as follows: B-I, turbulence effects; B-II, control lags and delays; B-III, control-moment limits; B-IV, control moments through stored energy; B-V, inter-axis motion coupling; B-VI, independent thrust-vector control; and B-VII, rate-command/attitude-hold control. Pilot comments for the height control test cases are summarized in Tables B-VIII and B-IX. Table B-VIII contains velocity damping and thrust-to-weight ratio. Comments from the studies of thrust lags and delays and incremental thrust through stored energy are shown in Table B-IX. The pilot comments from the directional control studies are summarized in the last table, B-X. on one services of the service #### TABLE B-I # PILOT COMMENTS FROM THE STUDY OF TURBULENCE INTENSITY Flying Qualities Results Given in Table A-II | | Γ | Γ | _ | Т | T | | Plat | 41 | · | | |------|---|-------------|----------------|-----|--|--|---|--|---
--| | 7850 | COL. | fin. | <u> **</u> | 170 | "election of | <u> </u> | <u> </u> | 1 | frecision water, | | | _ | - CONTRA | Hoda | ٠,, | L | Control Committaities | *Learnering | Quick Steps | Turn-Orman-Spot | Vertical Lamiling,
Secondary Dymanics | Overall Palant * | | n | 9.1
************************************ | 4-73 | 0.330 | 2 | Set to achieve desired
roll and pitch response
for renorvering. | Our effects negligible, could perfore the air taxi with countries eroble precision. Filet werkload quits low. Control extinue were very small and low frequency. | Performed guite energy
but requires a little
enticipation to step al
desired print. | Quite easy, required
wirtually no thrust
trim control. | Nover performance very
good, required very
little filet effort. | A very good configura-
tion, little control
componenties, and effort
required to perform the
tank | | | | 1-73 | 0.206
0.304 | | Selected blood on mrou-
raring and huvering re-
quirements. | First is very easily controlled,
don't notice any affects of tur-
bulence, the iritiate notion
scally is both lessent and lengi-
tudies! direction and one stap
procisely. | Can stop quickly but
fairly large attitude
changes are requirel.
So problem boiling alti-
tude and bending for my
quick stope. | Able to remin over the apot quite well. No pro-
lim holding attitude. | Coult lover quite ancu-
rately Vertical manding
was remanably procise.
Symmics for one aris
din't affect my evalua-
tios of another axis. | In goodel, the con-
figuration has an
objectionable features | | | | 110 | 0.313 | - | Selected to get amessar;
attitude response. | In mother, sould purfor this very ecountally, very precisely. | Could perfore mourately | Could remain very pre-
cisely ever the spot
and turn quite ranishy
while doing so, wing
tilt ecethol was used
to small extent. | No priblem. Could be some
calls tracisely to later
action setwon dynamics. | R. ch,ectionable fea-
tures in this case,
except scatibly the
los unas parameter,
fine attitude convector
intics | | 12 | MIL
Oughty
3 8 ft/sec | 1-73 | 0.259
0.239 | , | Something related
primarily for cover | No difficulty, crued stabilise each half my relocities and stop pre-
cisely. | Could sto just quickly
and hold my manuscring
position after storying
have area would be
desirable. | Could turm over a spot quite scourstaly. | SAR wiffles't Could hope
hover position accurately
while performing the ver-
tical hading. | | | 77 | 803
6, 100, 2
9 2 27/146 | <i>⊷</i> 73 | 0.412
0.338 | 1.5 | Set to order puri of-
forte to pitch sor real | Not to auticipate etopolog reint
due to low grag, demonant diffi-
cult to stop. Affort of accionat-
guar disturbancer or attitude and
'on translational drug necessitat-
ed considerable pilot consensation | Pequires considerable
acticipation to stop. | Reactively easy but ill scaling gust listur-
bances in both position and attitude listile ving tilt was required. | Performance was good, but
it did require erms acco-
cempation to offset the
gust distarbances. | Must cojectionship fea-
tures were moderate
gust effects on place
sairull and the dif-
Jicalcy 'n stopping | | | | 3-71 | 0.306 | | Selected for precision
trust and close control
becase or relatively
high level of tubulance | Somethst difficult to stability desired velocities because of the torontence. Does problem etopolicy recitedy and bouring. Cours partors this part of the task fairly wall, though. | Bo real protume with
the quick stop, | Sligitly difficult in-
owner of the gusts.
Uncor attitude connector
istics belied | Precision hove is mide-
ratel, difficult, must
my attention to quate
and make appreciable
attitude changes while to
land the army precisely | und nudigurating with
a auterate workload, | | | | 3- Ng | 0.231 | 3 | Set to get the attitude
previous I desired | or difficult, and respons to
all the control legate. large
speed stability and uses direct,
ametimes blow laterally stan
managements (ongitudically. | No proble, can step
very quickly. | Difficult but auch attitude control very circ giving so time to commontate on plaining the commontate on plaining the commontate on plaining the commontate on plaining the commontate of the common and commontate on the common and commontate on the commontate of the common and an | Could hower quite well, wit have X ₂ X ₄ agt me hisy Could land well so problem | Orangerment of testionals above solutionals above the assessment of the assessment of the assessment of the assessment to the assessment of o | | 74 | 705
(h _a udy -
3,5 Et/sec | A 73 | 0.307
0.705 | 3 | bet m'aly for actitude
chique during monarow-
inc. | Evament difficult to attrict
translational motion, requires
rather large stiffure charges.
One can stop with restry prof
degree of persistion. | lifficult to perform,
just then he get up to
speed and then large
sittlude classics are re-
quired to accept twice
city. | imprires trim changes
with the wing Almo
can ge's blown sround
a lot in portion. No
mains quite a lot of
attention | feirly may, although the
winds push one knowed in
vosition. Incling and
tabout not difficult. | Riggest orjection to
high drug of aircreft
and the associated
large attitudes required
to manactur. | | | | 2-13 | 3,306
3,265 | 3 | Selected primerity to
occurs breeze year-
ture | fure response to control Liquis,
Able to initiate socious and holic
control thoughtes without for-
bica, dimensit somethes diaggid-
ia position verponse | Couldn't rece on gatch-
by so would alth, then-
what distinuit to tal
space raine, threater
etained changes not
really required. | Abo to reach over
spit mirly well, in
site of the large of
coal ste hade tymmelic
coals. | (cult term precisely
vision any difficulty
and parties rested
landing precisely. So
immending affects
continually. | (bly moderately rejectionable factures were serfects of the warms. If is lower and face-counters were the point function of the pointing density. | | | | 210 | 1.27¢ | • | Jelem H to get cashel
over Attitude. | Sury to expect Libes the area
pursuster, beared to stoy simply
Att sude was woll despect. | Conte ever quincly,
et thate very man to
control and the tree
parameter in pal to
etc. | The in accurately if
the is then four
via, till order | Could horse presistely and
least mitheat for mark
difficulty. No laterac-
tics on the symmetre. | frag persectors hade
him monorer resource
difficult. Investig
fundance has good
attitum stability and
position foreing. | | מ | 5/5
4/2-41 ₂ -
5:2 ft/140 | | 0.158
0.140 | | iniertoë ur revesëe pri-
per etriture rutus fre
konse | had suppose to marral isputs,
while to initiate and hold ortion
may alrely, he proclass storying
greatesty and hereity all the
access. | the t may so girlly as will like present difficult to waild up the great. | Able to rearie over the
epot filely wall, attl-
tude entrol to lether
but large drag lare-
meters because junction,
used late to grow even. | Could home practically al-
though were relatively
burys present electron-
mance from curse. Could
control boses alequately
for vertical lacting.
R interesting belows
dynamics | Caly objectionable fra-
ures use bursulants
erting on large drig
parameter during bover
and humanus, and
associate. | | .6 | 525
40g-40g-
3 2 Cr/aw | | 0 205 | • • | ot pimelly for tria
dering moneyne. | Attitue control way pad, little
par significance or littles.
Include lega
etilode langer to
not county valuety. But he she
filly process, some pack he
played moved in public, | on pricyous feet name. | Edificit only because
the gur's push the aim
crift securi in poet-
tion. large ving til
tris convens are re-
quired | terrements not but good
because of our tistus-
bucus or positive some
distinctly liming Cro-
tect activity relatively
not frequency | Out offer in it you!
The rip of estimates.
Artitude vol. Causes. | | | | 30 | 0.55 | 1 | felacted to vive decimal
actitude response in
burner. | Singish portion respons. Atti
Tute central vary sire: teaded be
"one position in wis normal to
necessar direction. | Stale only estably at
difficult to talk peak
time of for stapping. | this to perfore this
explass real Corn
offiteds characteristics simulticae toler. | Suppose defficult to
there of large gast of-
facts on drag parameters
it, to take large, rapid
estatude anagus. In
princeable interesting
between asse. | Distribution in the manufacture of | #### TABLE B-T (Continued) | | | 1 | T | 7 | -r | | P | | | | |-----|--|-------------|-------------------------|------|--|---|--|--|--|---| | - | aruseter | , P1. | . [| ٠- | | | nia nia | Consents | Proc'slow Hover, | | | _ | *** | N.) | -i- | 375 | "common Semastiviti- | | Quick Steps | turn-over-a-spor | Vertical landing,
Secondary Typical | Overell Evaluation | | 177 | 6,2 St/se | 1 | ٥ | \$91 | troi of gusta | off laterally when passavering location! Ally and vice were Milion to a lettically district to book to two tall all the same of the same time in a lattle statue sortice books of dynamics. | too respective to pust | t very, very alculy, the | Course t hover particle in accurately. Could arrest partition which, but way difficult to g back to easiest hower position. Could land at right, but it was cirricult. Used the true coult to itll valorities To produm with success dynamics. | drag parameters very
objectionable. Attibude
well ampal, many to
control, knowner. | | | a_+c _{vg} ,
3.6 20/am | | 0. | | Selected for semanteriant to control mili gu | me Response to control impute grod.
Stopping at instruct point require
a little enticipation is reverse
roll. Onli relatele grand trad
fairly well. | Sulput seen auttetrate | of man wint south re- | with little control mo. | Configuration fairly
good, Gust disturbance
so or roll and price did
require a bit of palot
attention. | | | | 3-7 | 0.: | | to move the aircraft around in position. | tilise and hold value it w | Total mitate account | Nost difficult subtank The large urag para- metary resulted in large position distur- bancs, Used large tri changes and had to be very careful with them | tical landing n.t siffi-
cult. The lateral (long-
tudinal) drag parameter
affected no when trying
to control longitudinal | feature was the effect | | | | 1-10 | 03 | | attitude sample and
emble pilot to charge
smalle pilot to charge
to counterest the effice
of drug parameter, | 14 | Busy to step war, quick
lr, the drag parameters
balled. | Prifficult, but was done along so do sound to or able to handle it pretty rail. Used a lot of ving-tilt angle. | clouly. Oust disturbance
low, Ouald land suite | Sing parameter to the | | * | gob
d _{ig} -d _{ig} -
5 0 m/sec | 6-73 | ء ٥ | 0 | relected to achieve the desirer attitude re- | ship was hind of sleggish, Could
stabilise and hold velocities and
stop precisely. | Ould stop quite quite
ip. Belatively large
attitude changes were
required. | Hest difficult of all
the subtasts because of
the construction and
accivity required to
communit the same
wises excise tarough
the speed-viability
parasetes and hold my
boweing spot. | Necrobely difficult, on
startial disturbances in
position, large ettimos
changes required to cor-
rect them. M. interaction | Chiectionable feature -
attitude response to
gusta through spend
stability which land | | 15 | BON
Segratege
5.2 TE/ARC | A-173 | 0.61
0.35 | | Set to control very largest disturbances | Nifficult to initiate motion, bold
bending and stop precisely becomes
of gust affects. | difficult to stop be-
sume of gust effects.
large stituis charges
regimes so control
position. | Mirrolls to hold posi-
tion. Treat deal of
coordination between
ving till and control
impet required. Mirri-
cult to perform. | Difficult, require an committee annotate of com-
trol kept. Large atti-
tude changes result from
gaste and obstrol impute. | Most objectionable fea-
ture was the very high
gast smaritivity and
lack of attitude damp-
ing. Yary high workload
and very high dogree of
concentration required
to maintain-control. | | | | ⊷ f8 | 0.51 | | Salected to headle tur-
bulence affects on stit.
Itself has to sorment for
the large position dis-
placements introduced by
turtulence, | to work hard to bold beind valu-
sities. Mifficult to mintain the
"position while performing the x
part of the massiver and vice-
vorum. Large control deflections
required periodically. | Could stop quickly but
had to match position
carefully afterwards.
Autil control motions
required. | spot because of good
etitivite dynamics. Eves
with a large t, one
hower over the spot
reneceskly wall. Rad to
be correlal, used the | Attitude dynamics good,
allowed pilot to horse
fairly wall. Higgest pro-
bles was effect of two-
bulence on the drug para-
seture, ands vertical
leading difficult. So
actionable interaction. | Objectionable features-
effects of terbalence
on stitude and post-
tion. Perorable fea-
tures - Good stitude
control response. | | | | | 0.37 | 5 | Sciented to overcam gua
efforts on attitude. | blows all over, sharp rough gust
imputs, stiffuls cacillates
around rildly. One't perform well | Attitude control work-
load overwhelming be-
sense of gusts. Procise
control impossible. | aloue off position by
the large garts, could
not change wing till
quickly enough to hold
it. Hends full just con-
trolling pitch, roll
attitute. | Couldn't hover precisely;
eculd beep only within
'15 ft of square, Landing
Lasardows, very difficult
large interactive effects
between pitch and roll. | Very difficult to con-
trol and hamardous.
Seeds more despites to
reduce response to
turbelesce. | | | e _{ug} ·a _{vg} ·
g h Its/oom | ۳n | 0.375 | | let to control gus dis-
turbases on roll and
sitch attitude. | No problem initiating or stopping
urtion, Only resets within the
ground track fairly acceptably and
hold beading and altitude fairly
wall. | No particular procles,
except constant trim best
to be beld in to main-
tain velocities. | Performance good, very
little wing tilt trib
required. Nort of "he
workload from control-
ling attitude distur-
hores. | Good performace, | Dynamics were fairly
good, more pitch rute
and roll rate damping
desirable to reduce
response to turbulence. | | | | | 0 363
0 350
0.375 | | Selected to gain control
over attitude | Disagreeable "'Intel response to
control 'quite Difficult to sta-
maiss etitude which also affects
and by skilling to chashing manus-
vering valuations, outder to
fairly precisely but this accided
unicetted and accessive stripude
motions. | Could perfore quite steps without great difficulty. Attitude medical serie larger than would like. | roll attitude for this subtesk. | Could hover fairly pre-
cisely and could control
hover positics suffi-
ciselly well to perform
a reasonable leading.
Attitude dynamics in roll
affected sy shility to
control pitch and vice-
verse. | Most objectionable fun-
ture was the lock of
attitude damping. | | | | - "1 | 0.297 | , | | Not too difficult nil get blown
off track, but not requestly,
but effects significant on pitch
and well. | N. significant problems.
Drug parameters small which hade it somewhat
difficult to arrest mo-
tice. | sufficient, & ticechie | did a good job landing,
Some interaction between
pitch and roll control, | Objectionable facture was the gust affect on attlinds. More despite desirable to roduce gust represe. Favo-shie ferburse - Lie lov dreg parameters made the novering and turn suitable less difficult. | #### TABLE B-I (Continued) | \Box | | 13000 | | | | | Pales or | rmeste | | | |--------|---|--------------
------------------|----|--|---|--|--|---|---| | •" | #Non-state
VI | 52
** !e | 1. | 54 | rejection of onthe existing | Haneuver*se | quien Stops | THE OVER-4-Epot | Protein Hover,
Vervicel Landing,
Secondary Dynamics | Overell Eveloation | | 713 | 502
44-44-
5.8 58/440 | 2-73 | 0.4.0
(see | 6 | Inlected to energy atti-
tude response to guste
and to enserouse the lack
of dampins. | Attitude needs are lamping. Pur-
bulsone really buffered as about,
Able to retailise and bold valo-
cities Fairly wall, but required
a great deal or attention. Could
alon precisely. | Can stop quickly, but
very large attitude
changes result have some
difficulty stabilizing
nttitude. | Able to remain over the
spot gits wall. Lee
frag jarmanters helpsi,
Attibude required a
significant amount of
attention | Only hover adequately
with affort and could
land christle. A "litude
wen't as controllatio as
it should be, foss inter-
action between the notice
is one aris and my abil-
ity to control another
axis. | Frimary objectionable
feature was the lack
of mitting damping and
its response so tur-
bulence, ravarable
feature low ting
parasities belief in
hove and turn. | | 112 | 902
** ₃ -4 ₇ -
0 2 ft/sec | R.73 | 0.322 | 5 | Sel the to control atti-
tude gust response and
control restonse | Difficult to initiate and hold velocities because of the stictude characteristics, could not moment wer interelly and hold longitudinal position preciety. Attitute assumed uppredictable. | Oculi stop relatively
quickly but had diffi-
culty solding desired
position of the other
axis. Large utilities
changes involved in this
subtant. | Atia to maintain posi-
tion pairiy wall become:
of low care para exters.
Attitude control quite
difficult. | Able to hever fairly wall
but large attitude excur-
sions involved. Very
difficult to escomplish
vertical landing. Fitch
activute overtrol defi-
nitally affected by abil-
ity to control rell and
vice-verse. | Attitude characteris-
tics quite objection-
able, springy charac-
teristic accoying
Pavorants feature -
low drag parameters | | 723 | 905
6 ₅₂ -6 ₅₂ -
3,4:21/##0 | 1.78 | 0,342
5,295 | | Est to counteract quet
Sisturbaces on attitude | Considerable affect required to
control attitude gurt disturbances
large attitude changes accessing
to initiate and sentan aution
Difficult to hold desire? velo-
cities, but could stop precisely | Difficult to generate
velocity. Could stop
fairly well, although
large attitude charges
were required. | Dust listurbances on
actitude and position
amonytag, but perfor-
mance not two bad. Re-
quired concentration. | Performance trait; good,
but considerable stick
a mixity due to sticke
and position gust distur-
bance learing set two
lithout | Roses attitude chaping
and high true rejec-
tionable in hower, air-
though it did provide
translational damping | | | | 3-72 | 0.295 | | Selected to control post
time distirbaces and
for measurering | Difficult because attitude was underdomped. Could not maintain a precise attitude angue or a steady velocity. Could stop fatrix precisely. | Diffica't to atte'n walo-
citime, but could stop
quickly. | Difficult, had to be
very careful with my
control inputs and con-
contrate Used trim al-
most constantly | Could hower fairly accu-
rately build like botter
control over attitute for
leading. Laters. Grag
paraseter did effect
shillify to control loga-
tuitoslly and vice-versa. | drug persectors and the
low desping levels in
pitch and roll. | | | | F-143 | | 6 | Tele: ed to coming etti.
tude response to stick
inpute and guete. | We too difficult, lack of arts
tude darping affects ability to
smirts in constant velocity.
Lateral speed exactlity effects
year crident through mitten. | Our accomplish, but could use more attitude furning | | One cover well but suct
pay attaction, Notice
below to keep from over-
controlling. One land
alsquarely. | Notice leads to use of
smaller, more trains
control impute. Take-
off and landing simila-
tions two realistic. | | TIL | 55
We-dyg-
58 M/sec | B-78 | 0 363 | | Selected to get witch
and mill attitude under
erntrol | Seed more damping in bits pits
and roll. Edifficult to initiate
anotion and to level at the concer
Country's hold ground track well. | Can ever quickly but
large attin to changes
result difficuls to obtain
trol attitude | Can't resum over the
spot well Must use wing
that a greet leal large
pitch and roll engles | Precision bover is san-
agentle, but anye atti-
tute angles required,
moving tough become of
auto- avegitational
dynamics made it diffi-
cult to control lateral
and vice-verse | Chiectionable feature -
the lack of sawing | | | | | n, kaye
O yyo | | Salected to get attitude
wader control. | and predator a major acceptance | Could stop fairly quick-
ly, large drag parameter
delped, Develope, large
attitude dogues, though, | Could held prestion feir-
ly well, but very diffi-
cult tash. Must do alon-
ly, use Yime tilt con-
starty. | Could howse vitable too
men difficulty, for or
attitude motics landed
alight but had to can
ving tilt dome fate—
action. | Prinary objectionable
features - large gust
injute, low damping,
gusts ecting on the
dang parameter. Parur-
able features - none. | | та5 | 206
C ₁₈ ay ₆ s
E 2 14/200 | 4*9 | 0.5/1
0.352 | 9 | Selected to ensurement
very large gust distur-
bunces and to meistain
control | All aspects of the settast ex-
tremal difficult Primary affort
was in maintaining curred Diffi-
cult to stay within boundaries of
manuscript area and to bold head-
ing and eletitude | very tifficult to perfee | Difficult to hold posi-
tion, beint ast desired
turn rate because of
large gust disturbances
in pitch and roll | Incestible. Decesive
slick emetrol scrivity
required lanning becard-
has been use of difficulty
is bolding but position
and level activities. | | | | | 1.7 8 | ارد.
د لارد | | Sejected to echieve mon-
trul over attitute and
attenuate year prajcoss | Opengreeable response to control impute and justs, teste much more impute, and justs, teste much control impute, can called valuebles est difficult to stop | re; is control netices | Able to remain over a spic but required with afford and attention leading with reactly, fitting control was difficult. | Periodically burst off
political and larer atti-
tude angles required to
arrest action Dynamics
aren't adequate for ven-
tical landium The dyna-
tical landium The dyna-
mics from longistismal
arts dif affect by con-
trol of lateral nois, and
vice versa. | histictable funktions 21 August Prepares in positive and attitude and the small levels of dauging. 20 Tevrable functions | | No | y a
Cultay
3 k ma∫age | An FA | 0 194
5 km | • | fet to counterest appropriate of at effects | Could be a formed with considerable - ensetrative. Pitch are real were alightly underwayed for ider fairly sell and I were at desired coints. | Performed introvental
fact must compan gust
effects | come in "imily relding,
position, Required con-
centration to perform,
"ould stop mainly well
on presented brains | Could perform bown with
fair prevision, required
concepts for | ince of roll and ritch draming object/numble. | | | | O ; | 0 kg | • | | Cruta perfore fairly wall. Poula
justifie mane damping in hor! Jitch
and roll: But to cockwarter have
yeth artitude than destrable | Requires more noncertra-
tion and attention to
perform than muld per-
for, molarge attitude
outlinations | Armed admirately tem
the eject, low-wreg jara-
merume helped Invaloped
sume disagreemely large
artificies. | Averes mile accurately
me requires consisten-
tion tertion hading
not but difficult "o
real interestin | Objectionable features - lac. I descard in 91st A and roll contributions, response to the bullace scene than would like Farrentle features the and design parameter. | #### TABLE B-I (Concluded) | | | Hict- | | | | | Files C. | neata | | | |------------|--|--------------|-----------------|----|---|---
---|--|--|---| | Case | (rf)
(brareters | *1%.
%ole | 8. | 1× | election of | Mensurering | Quick Stops | Turn-Over-a-Crot | Precising Never,
"ertical landing,
Secondary Dynamics | Cverell shallers - | | T16 | 503
.a _{u_e} .a _{v_e} .
3.4 ft/sec | 2-13 | 0.1407
0.280 | | Selected to overcome
lack of damping and con-
trol response to turbu-
lence. | Fequired a significant amount of
costrol activity. BM to maneurer
slowly, Lack of position damping
annoying. | Need large attitude
changes to stop, and to
roll out at just the
right accent to stop
and stabilize position,
heci position damping. | Could perform fairly well
because of the low drag
parameters. Had to be
careful, however. | Could hower fairly wail,
but attitude madion re-
quired attention. Verti-
lar ting not too difficult
Symmetric from one harison
that axis did affect the
other | Objectionable features -
low attitude damping,
little more drug para-
meter meeded. | | 717 | 303
₁₂ #0vg"
5.8 FE/sec | 3-73 | 0.439
0.373 | 1 | Salented to overcome
lack of damping. | Good position response. Difficult
to control attitude, tended to
overshoot desired angle, required
significant compensation. | Could stop quickly but
really had to watch
attitude. Some tendency
to drift off longitud-
nally when maneuvering
laterally. | Able to ressin over the
spot because of the smal-
ling parameters, heeded
large stick inputs,
developed some vary large
pitch and roll rates. | roll motion. Couldn't
hold position precisely | Objectionable features -
the low level of atti-
tule deaping, feverable
features - the small
drag parameters. | | 115 | 303
40 ₄ | 8-73 | 0.467
0.352 | | Celected to costrol atti-
tude quat restocae. | Disagramble control response inputs, Seeds daming in pitch and roll, Difficult to stabilise, bold velocities and stor precisely | Can stop \(\tau\) tekly, but
large att.tude changes
required. Takes some
time to stabilize atti-
tude after coming to
a stop. | Alle to remain over the
spot fairly well because
drag jarameters were
small. Attitude control
difficult, had to con-
centrate, | Could hover fairly well
but large critrol motions
required, must concen-
trate. Difficult to main-
tain position wring ver-
tical landing, Dynamics
for roll att affect jater
control and vice-verse. | Difficult to central gust response. Hwever, | - HONELLAND HER BENEVER FOR SERVICE SE #### TABLE B-II ## PILOT COMMENTS FROM THE STUDY OF LONGITUDINAL AND LATERAL CONTROL SYSTEM LAGS AND DELAYS #### Flying Qualities Results Given in Table A-III an erecentration of the contraction contract | Г | | mire. | | Π | | | nua c | america | | | |-----------------|---|--------------|----------------|-----|---|--|---|---|---|---| | (411 | Cres.
Tereneters | 21R.
Note | 740 | * | felection of
Jetral Constitution | Minerrarise | Fick Stoke | Turns-Over-a-Spot | Precision Hover,
Yerical familing,
Secondary Dynasics | Overall Proluction | | 122 | 0.1
7 ° 7 °
0.1 | 3-73 | 0.303
0.248 | 2 | Selected to get the atti-
tude resputse movies. | Not difficult. Ricely despot atti-
bute response, alle to relect and
stabilize velocties with no pre-
blem, stop precisely. No lays evi-
dent is the attitude resonnee. | not difficult to perform
one control attitude
quite provincity. One per
form this tack very well | Not difficult to perform
Fing tilt control mot
used much. | No problem, one hover
pute precisely with very
little control input,
Vertical Lasting also so
difficulty. | Fine case, Attitude is
very micely correlated
with the eties impute,
no exticollie lage, one
course guite wall. | | 3 | KI
7, - 7, -
0.) | <i>1</i> -13 | 0.29A
0.278 | 3 | Jet to achirve destroi
attitude response for the
air taxi. | Performance was good, only alight-
ly object; mobile feature was take
commanding on etilizade change
onsert alight escillation, also
salight lag in attitude response.
Out offerts minimal, control ma-
tions low frequency and small in
emplitude. | Performance was good,
although slight lag in
attitude response when
commoding rapid atti-
tude changes. | Yery only and very little
threat rotation control
required. | effert, performance good. | Only alightly objection
able feature was small
lag in attitude re-
sponse and small estil-
latory motion when
communing a rapid atti-
tude change. | | | | 5-73 | 0.330
9.251 | 2.5 | Selected to get the atti-
tude response to over-
case a slight lag. | Air taxi not difficult. Coali per-
ferm precisely. Sem milght cocil-
lation when rolling or pitching in
and not of measure, but nothing
difficult to attemate. No lack of
control power. | Could perform precisely,
no problem. Again slight
oscillation of ritch and
roll, but easily damped. | Quite easy to perform,
Dim't use wing tilt con-
trol much. | Related impute in hower,
could hower quite pro-
cisely. Vertical landing
also not difficult. | Ricely duped, low re-
sponse to terbalance,
lag effects small, some
alight terbary to
neciliate in pitch and
yell but easily despet. | | :13 | 802
7 ₆ + 7 ₆ +
C.6 | A-PB | 0.355
0.352 | 2 | Salacted to give desired
attitude responses. | The air tent relatively many, Re-
ponses to orbital impute good
about all asse, Bany to faiting
measure atthough some senticipa-
tion regulards to stop at a desired
position. Could stop and Joid
hover with good degree of preci-
sion, Ouly small stitude charges
populsed. | No problem, although
som, positive articipa-
tion required to stop at
desired point. | Salativaly may, had to
use a small assumt of
wing till control to
offest the sean wind
effects. | Very ency to hover, required only very small control impute. | Tiled the good ettitule
control and the very
low response to tur-
bulence. Mict work-
load quite low. | | | | 1-73 | 0.339
0.266 | 3 | Salected to get the atti-
bude response. | Air taxt so probles. On All perform
both X and Y measurer teals grea-
cisely and hold valorities examy
and arrest motion without too mod-
difficulty. Elight tendency to
oscillate at the end of measurer,
had to compensate for this but it
mean't difficult. | Could strp quite socu-
rataly and didn't en-
perisons any real large
attitude changes. Again,
some tendeury to oscil-
late is pitch and roll-
hai to worry about this
a bit. | So difficulty here.
Couls perfore quite well
wing tilt control wass't
used a great deal. | Could hover very pre-
cisely with relaxed slow
outrol motions. Vertical
landing day to perform. | Little vit of oscil-
lation in pitch and
roll but not a big
problem. Rice relaxed
rappose, low response
to turbulence, sicely
dasped configuration. | | | | P.12 | 0.379 | 3 | Salected to control re-
eposes to turbulence and
also pitch oscillations, | Coulm't perform att text as pre-
cisaly on an easily as desired,
infrient to centrol etitude and
to hold a derired valority. Could
not stop very precisely. | Sice problem as air
taxi, just coulin't seem
to control position
rates as accurately as
desired. | Some problems were con-
trolling position while
turning. Mid try to use
the wing tilt control,
but lott position. | Nover when't too great a
problem becomes didn't
introduce large control
imputs. Didn't get into
any occiliations. Could
land alright Some inter-
action between pitch and
rolls. | The ceciliatory re-
sprease is Titch and
roll enorgies, Could
not seem to stabilize
Titch and roll parti-
cularly will while
mosuvering and doing
quick
stops. | | 1 ¹² | NS
T ₀ " T ₀ "
0.1 | 9-72 | 0.302 | 2 | Selected to give desired response. | dood response to control inputs,
wary predictable attitude response
so problem at all in coning up to
a desired velocity and holding it
and stopping at desired position.
Likes the large stem parameter
here. Didn't worry too much about
heing klown shout. | Could stop wary miskly
and precisely. Had no
problem stabilising on
rate. | Attitude so easily sou-
trolled and gents low
mough so that even with
high dwag cide't have
difficulty. | So problem in hower-
consismily would get
blows off position ease,
but so read difficulty. | so real objectionable features. The large drag ande it scammat difficult to attain lateral and longitudinal valocities. Occi attibute response, drag rade it easy to stop precisely and rapidly. This is a good case. | | ш | 205
T ₀ = T ₀ =
0.3 | 3-73 | 0.296
0.254 | 2 | Selected to get the response for roll and pitch. | Could perfore air taxi very well,
Attitude was well daged, very
predictable soon so cerlibating,
Could stop accessedly due to the
Fairly large drug. Outs to
amporance. Very good case, | Could stop quite pre-
cisely, no problems.
Large drug helped stop-
ping. | Performed this subtack
very wall. Could take
spec off attitude and
look at wing tilt indica-
tor with no problem.
Could tilt the wing rep-
isity, this compensated
very alonly for the rean
wind. | Hower no problem, nor was vertical landing. | No objectionable fea-
tures. Because of good
attitude characteristics
the high drug was no
problem whom performing
the turn. | | 126 | 905
7. • 7. •
0.6 | A-P3 | 0.312 | 3 | Salected to get adequate attitude response. | Relatively good position control during air text but required re-
latively large stitute changes to get aircraft response is transla-
tion. Could hover fairly well at the corners and could hold secting and altitude accurately because workload is pitch and roll was lon control deflections were small. | Very easy to perform be-
cause of the high drag
of the configuration. | Difficult is that con-
sideralls wing tilt con-
trol hat to be used to
offset the man wind
affects, but with artici-
pation performance was
fairly good. | Hower was fairly good al-
though with the high deap
got pushed around in posi-
tion quite often. This
depended my rating elight-
ly. | The only objectionable feature was the large disturbance is position through the drag of the aircraft while bowering. | | | | b-73 | 0.353
0.363 | | Salected to gain the
attitude response seeded
to overcome lags. | Couls perfore air text firstly well
bid notice but when measurering
interally tended to get blown of
comment in longitudinal post inc,
but baselled measurer fairly well.
Some fairly small contlictions in
attitude that were difficult to
deep, but no great problem. | no problem with this tank, could come to de-
tank, could come to de-
aired system and stop fair. It security, mether
large drug believed. | Ne this guits wall, attitude was sufficiently wall desped and controllable that could writed vision between vine tilt angle and display. | With repid wing till
could retain thrust quick
ly so as to keep fairly
decent control over bover
position. Vertical land-
ing so proless. | only objectionable rea-
ture was small lag in
response but that led
to low level neather,
tions which were Tairly
persistent and required
come attention, Wall
improvement to the response
low response to turbu-
lance and the large drag-
halped in measurering
and quick stope. | #### TABLE B-II (Continued) | Γ | Car. | mio | | Τ | L | | Pilot: | Oursele | | ······································ | |-------|-------------------------|-------------|----------------|-----|---|--|---|--|---|---| | C2.40 | Purereter | S La
Mod | . -: | | Control Sensitivities | Mannering | Quiet Stope | Tirm-Over-4-Spot | Procision Howar,
Vertical Inching, | Overall Production | | 125 | 305
% - % -
0.6 | 3-30 | 0.3 | -1- | | Onld perfers air text quite pre-
erally, altitude very suit amost
very predictable. Could step pre-
cisally and emeral hower and more
veries velocities very vall. But
excit predies perting abone our
festived trans co-unionally but | Do problem, Omia per-
ferm those quite smooth
ly not assurately. | Onld reads over the
spot very vall. Md nos
ving till central a good
deal because of the high
drag. | Boundary Armaics Bour set difficult. But to untri the gests thought tenied to get blow off is position. Vertical leading oney. Control on tivity relatively lay | Only of nor objectionable
feature was gatting
blown off position
periodically when try-
ing to measure and
layer. Fine abtitude | | 117 | 303 | - | 0.34 | | Selected to get the re- | Air tari so problem. Good response | to problem. | | during hover and landing | characteristics, well
despot, low response to
turbulence, confermable
ease. | | | 5.7.
0.1 | Bak | 0.30 | | spense sected to over-
ome despise; Wide reage
of control sensitivities
second compatable. | to the control impute, for re-
spense to technicase, and the high
drug helped in stopping and start
ing precisely and in helding de-
sired valuatly, | | Good attitude observary.
Jetics belied overcom-
the high year and also
the high year of change
of wing tilt which is
now available helped to
sentral inversing posi-
tion quite assumately. | Could haver quite accu-
retaly. Also, small had
without difficulty. | No objectionable fea-
tures, Personable fea-
tures were the good
desping and high drag
which helped in massa-
vers and quick stops. | | | | | 0.34 | 3 | the gurte. | Air tax: set difficult to perform
Notition motions were mindly dam
of due to large damp personner,
attitude was matte predictable.
The effects of gusts were session
large but tidn't offer any great
difficulty. | Could set up a desired
valceity and menower
wite wall, stop very
precisely without any
trouble. / Ititude enc-
tral wall dampet, very
predictable. | the spot without any
the spot without any
difficulty. But to use
wing tilt angle a good
deal because of high
drag but not difficult
to perform this teak, | Howe is probably the
most difficult that to
perfers could note posi-
tion fairly wall but it
required appreciable con-
trol activity, dood and
of authol activity need-
ed for vertical landing. | Objectionable feature suc the semesta high response to turbulence. Position was nicely demand, attitude dynamics were good. | | 120 | 93
7, - 7, -
0.3 | 4-71 | 0.34 | 3 |
bute response. Attitude
dynamics well Jamped and
maily commorted. | Air that fully many enemy that
fully long estitutes required to
initiate antion, however one step
fully precisely at desired point.
Outral deflections guistively
small. | attitudes are required
to initiate the switce. | Pairly easy erespt that
conventration is re-
quired to offset the
mans visal. Oursidestle
through rotation is re-
quired to maintain hower
lag position in the pre-
sence of the mean visal. | Bver performance very
good with very little
pilot ethestics required. | Attibute control is
good and there is no
ordinance of outrol
lags in the system.
Nort objectionship for-
bure is high drag. In
particular the gust
effects or position
disturb the strengt. | | | | 3-10 | 0.27 | | Salected to countract
the Camping effects. | Afr text so gradiem it in extensions light constillation in relined pitch in response to control implicit, but rot large and year easily controlled, Alas to perform massurer g.ite accurately, | and had no problem -st-
ifing up and maintaining
a constant rate during
the quick rate, large
speed stability added
stopping rapidly and
precisely. | Able to remain over the
spot quite vail. In-
creased rate on wing
tilt below this masserur | Could hove presingly
with Pairty Haides one
would impute. Vertical
landing mo provings. Used
wing till to bely with
logarowinal position
control. | only objectionship fan-
ture wat the slight
occiliation in response
to roll sed pitch in-
puts, but any particu-
larly bed. Inte of
maping, low response
to gusts, and the high
draw balped memorraring
and didn't seem to de-
grade Lower or the turn
seasons. Ned to closely we'ch wing till angle in
the turn. | | | | | 0.329 | | restriction to turbe. | Begones to control inputs wall-
here been fairly predictaly not the bu-
bulant effect own to large.
Could perfore the task but really
and to consentrate, Difficult, not
to contently be taking one of
the effects of guest and vacching
to make one work taken off:
Difficult to hold the desired
"diccity. | Could perfore the test
but really led to velock
for the effects of gurta | Mid this fairly wall but
bad to do it alonly be-
manse of the affects of
the gurse. Out into some
fairly lesses and rela-
tivaly escillatory atti-
tor's changes. Used wing
tilt control a good deal. | Must featings about skilling to haver. Roma-
tions essend to be able to do it fairly wall, other these act so well.
Could law it cliright. Lot of control activity to both hover and landing. | Primary Aliectionship
water was response to
terminance. | | | 234
76 • 76 •
C.6 | LP. | 0.167 | | ecatrol. | Al- lexi fairly may ercept with
alga form required relatively
large attitudes to initiate notion
Could stop switco relatively easy
and hold hover position with very
small control deflections. | No problems emert in
getting the sircraft
moving, but sould stop
"any securately at de-
sired spot. | Required antisimation with thrust received our truly attitude contract required year a slight amount of actuation. Dad use wing till, noter it to hold however, position while making the turn. | Hower performance stud,
but did get blows around
a little bit in position. | Attitude control was
fairly good but it did
require a little atten-
tion to prevent it from
because carillatmy and
from drifting off desired
heading. | | | | 3-73 | 0.101 | 3 | the response desired. | In general, could perfore the beat
fitting well. Mr was we no pro-
blem. Attitude around resilictable,
and the high drug helped. | | ly well. Min't have to
warry for much accut atth
bude ead the large repid
ring tilt rete beiset in | th difficult. Only thing among the the tillian oulty in gottly the con- | No real objectionable
feature, some alight
contilation in pitch
and roll. the general
good attitude character-
is-los are thermalia
features. | | | 72
7. • 7. • | N.TS | 0.309
3.250 | * | speed-stability effects
and the response to tur-
bulence | Represe to extract impose we previously allowed it was align; previously and the second of secon | ties a slight regrouse
to turbulence and some
slight cociliation in
pitch and roll, | ht problem. Occasionally
generated some fully
large and occalilatory
roll and ritth actions,
but was able to maintain
tocition over the synt
very wall. | R difficulty with home
or landing. | The only chierticable feature search to be a slight outlintory tendered in pitch and rull and some response to burbulence. Stitled the effects of rysed stability shes measurement, but these were suchly course table, attitude response we fairly predictable and could perform all table without too much profus and table of the comments. | al a defension of the week to be a second of the | | tref. | min | 14. | Π | | | Pilot C | consta | | | |-------|-------------------------------------|------|-----------------|-----|--|--|---|---|---|---| | (°ase | Parameters | 21s. | 1, | ľ | Selection of
Covered Secultivities | mounting | Julier Storpe | Tam-Over-4-Spot | Precision Hover,
Vertical Linking,
Successary Dynamics | Overall Evaluation | | uze | 3C2
7, - 7, -
0.1 | 3.13 | 0.390
0.298 | 1 - | felected to control atti-
luio beause of your
desping ead also to con-
trol attitude response
to turbulence. | Performed the that their well be
there neve attitude occiliations,
ictimate measures dauging for
more precision control. | the shie to stop quick,
but would prefer more
strikted despite, Atti-
tion response to turbu-
lence guite large and
difficult to hout velo-
cities, breadopt fairly
large stitude angles
when exceeding motion, | has while to remain over
the spot fairly wall the
to a low frag. However,
did develop some fairly
large occiliations in
stituted. Nai's use
wing tilt control too
lunch. | Able to hence pulte pro- | Would prefer to see
more desping in pitch
and roal, less response
to turbulerie, and more
predictability in the
response to control in-
price. Configuration was
controllable and co.11
perform the team but
not easily as | | :233 | 100
7, * 7 ₆ *
0.3 | | 0.524
0.257 | | Set to control and sta-
bilise pitch and roll
attitude. | Air tail measurer regulars some variabout is that attitude is lightly demond and fairly gunt sees they provides institution of the sees | et seeired pois . | Herriest workload is in
offsetting gast
distur-
mances on settinde and
maintaining attitude
stability. Yery little
wing lill one used in
""" """ registion. | Nover performance was
fairly good to: attitude
control required some
attention. | hest objectionable fea-
thers of this case were
(1) the control lags in
both pitch ase poil and
(7) the gast distu-
hances on pitch and
roll: Yore damping
would be desirable.
Adequate performance
requires considerable
pilot concentration. | | | | | c, 347
0 270 | 5 | salected to control
coefiliations in pitch
and roll to get attitude
response desired, | Problem Nere was certifiatory na-
ture of roll and sitch, although
never felt control would be look,
ise able to stop fairly precisely
and to extend velocities previy
well, but did have to appear
algulificant secund of attention
to citch and roll. | So great problem have,
but attitude becase to
warder around and had
to pay attention to it. | Was able to remain over
the spot cylic will, but
pitch and roll required
attention, Gerllatery
matters of pitch and roll
use an annoyance. | Nover wasn't any great
difficulty, could hold it
pretty securetally hat its
get stam maderstally large
stitutes because of
their oscillatory manue,
could land quite well. | Min't care for the conciliatory characteristics in gitch and roll and it seemed that speed stability and the grete excited cociliations and then would have to deep them. Fitch as i roll ware still controllable and low drug builded during the knowing and the turn. | | | | 5-N2 | 0.315 | 7 | Selected to courn) the
gusts and also the
oscillatory strifule
characteristics. | Very difficult, was constantly
see-seafing in both pitte and pull,
trying to kery approximate desires
selectly. Coultantly perfore this
tash precisely or in any reason-
able time. | /my difficult to stop
at desired point and
got into annual marga,
cecillatory attitudes. | Again attitute was in constant oscillating mo-
tifum Could remain close to the sware but really was loveing attitude back and forth. It'd use wing tilt a little bit, wasn't really critical. | Conidn't really stay over
hower point consistently,
Theorem. Dour perfor-
sance not too bad con-
pares to other subtacks.
It'd manage to land it.
Lot of control activity
is both hover and lawling
Daffaitaly some inter-
action between roll and
pitch. | Objectionable features were the oscillatory nature of stitude and response to turbulence. Really had to with the oscillatory stitude characteristics thich were difficult to damp. | | 1117 | 162
7 7
0.6 | 2-7B | 0.387
0.393 | 8 | Det in attempt to main
Lain attimuse stability, | Aft had very difficult become of difficult) in bolding attitude precisely. No problem in initiating alcreatt artino as drag seemed relatively law. Does difficulty bolding precision borner at the end of memorrans. Excessive stitude changes often took place due to inhability to control attitude. Control deflections were quite large and at these seedings of Fig. 1970 cacillations. | Phoners committed diffi-
cult due to the very
poor attitude control. | Required very little wink tilt congenitation for mean wind. Net concentration was on min-bailing attitude stability, Height control suffered comment becomes of the high with load ja jitch and roll. | Hower number difficult
because cound't cestral
stitutes exertaly, con-
ren's activity was large. | Not objectionable fea-
ture was instillity to
control roll and pitto-
cutton roll and pitto-
stribude due to the
simulative leng orilla-
tory, lightly descel,
and influenced by con-
trol lays. Test perfor-
mace generally quite
pure, Considerable con-
puention required just
to mutuais control at
times. | | | | - 1 | 0.414
0.274 | | felected to control grate
and to some extent coun-
ternet effects of control
lags, | Could just perform the managering
test. Wes in constant certilation. In both pitch and roll. Ver con-
trait input boilt us, certilation
which required considerable effort
to darp. Estimated valorities and boil sented whostly and to
ston precisely and hower, town
large stitute excursion encurred | air tasi, Guld stop the
sircraft but large stit-
tude excursions occurred | but attitute west into | Could have but not as precisely as Cestred, Attitude ceciliations mule it disficult. Ind manage to land, but it manage to land, but it was tough, latered granules definitely effected longitudinal tyrusics and vice-weeks. | The attitude character-
istics in both roll and
patch are very objection-
site. Roll and pitch in
contact motion through
large angles. | | | | | 0.316 | | | | | | | 'honotrollable. Tried lifting off and bover- lag. Cauda't remain stationary for mue than 5 or 10 sec without to start 'a pitch the. would couple in some lawral writton Tries s'r or serve utflerent times, out just couldo't keep attitude us'er con- tert. | | | 936
7 7
0 t | - 1 | 0.432
0 345 | | delected to give responsional in pitch and reli-
and also to counteract
the effects of hurbulance | Could perform this macrier fairly
wall although did have to cor-
stantly attender part effects to
half presidented exititude angle
flight drag helps the manuraring
tash. Able to s'abilities fairly
well desired velocities. | We areat problem. The
high irag helicingain
have to watch estitude
response to turbulence,
but attitude seems to be
relatively predictable. | Performance fairly good,
Drn't see rightfloact
attitude oscillations, | Kner performed fairly
wall. Significant enough
of attempton required to
attenuate gusts. Oan lan-
fairly well too. | Prinary objection is the response to turbulence in pitch. Attitude seemed fairly predictable. large drag helped in smoorering and quick stops. | #### TABLE B-II (Continued) | Γ | T | Pilot. | Ι. | Т | | | Plan o | CORNELS | | | |----------|---|-------------|-------------------------|----|--|---|---|--|---|---| | 340 | Daf. | Sin. | ** | " | Seinction of | Baserely | inter free | Ten Orena Siet | frechte dere. | Compile Palmette | | 111) | 975
To • To •
0.3 | A-73 | 0.316
2.:35 | •3 | Curr-1 Smillivilles Enlarted for adoptes matrix of the certificary attitude dynamics. | Backer large stillshad changes to
gains in Salitime miles bit
maid stop ofth great deal of gre-
civic and sends hover fatting wall-
swept for being bless exceed in
positive
erestimably. | drarbet problem use
indisting the metion.
Caula stop gate energy
at desired point. | Cot bloom around quire a
lot, had to war contine
this wing titl control
with actingstim to
actuary to misself
horwring contine. | Serentery Symmetre
direct variables under the
high elibone all per
blem arcunt in position.
Outsell activity relative
by los. | New chiectionshie fun-
ture was text attitude
dynamics course to cook
a little new haping-
ing waspende to grats.
Rapid control in pile we
earling with step to it
all continues to devalu-
250. | | | | P 13 | 0.339
0.257 | , | related primarily to go
utilize under control
and to control stitleds
in presence of contin-
tions (unich warm's tea
difficult to control). | derpose to control injects evan-
viant contiliency. Fur for more
complay fails to initiate motion
and orbidizes and hold Control
valurities proving unit, although
oscillatory obsected included
commons affect ability to hald
valucities. | Ommersity could come to
the step fairly area-
rately and hole form:
without the mich diffi-
mitry, Rish drug appur-
ently helped. Siems off-
a little when trying to
occur to a desired post-
tion. | Typen'es did took to make it more difficult than if more display had been continued. Injud wing tilt make has improved things sometéerally. | Nove not particularly
sifficult, although had
to entiral gard offsets,
stringed eligibily occul-
latory. | Cajortionatic fastross -
alightly crelitatory
constructivies in this
and pitch, favorable
features - high imag
helped turing the wrone-
raring and quick stop. | | | | 2-18 | 6.394
0.386 | 7 | fulcated to control tur-
tulence and also offerts
or speed relibility during
the seasoner. | difficult and not very provisely. | hifficult is smoothly transities desired quid step praition. Assistance pt toto thirty temps attitudes. Pror performance. | Difficult, lot my off
is have position a
coupus of time. Cu-
stantly relling and
yitching and wallening
hack set forth. Sever
really tablished atti-
toris. Used considerable
ving till control. | "hac't able to Nover
partic-larly wall. Princi
ionly occlusted out of
position. Irrains, men't
way procise. A lot of
control activity repaired
lightfent amount of
internation. | Attitude control very objectionable. Large response to gaste large speciality effects who missovering and very certificture the stability office. Very difficult to stability once an occillation started. Hed to be very careful account crysing to stability of the billion of the total control of the stability of the billion of the total control of the stability of the billion of the total control of the stability | | Ш | 205
% • 74 •
0.6 | 3-79 | 0.399 | e | Selected to combon large
socialistics which result
is pitted and roll. | Desponse to created ingents in
vary, very dissipanchia. Lary
condilation result that seed a
very great seal of componention to
on solt to perform the test of the
last's perform the test precisery
or stabilize and hold velocities,
or stabilize and hold velocities.
Elgalifonon response to turvilmon | One be performed, large day hips so it does in monovering, but still quite a difficult task to perform. | Yorr, very difficult to
perfure. Tend to devaluy
large stiffuses and al-
nos puist was in on se-
tended FDD, just raunged
to regain occitos. | Bower very difficult become of our lifetory
dynamics. Just no way to
stabilize the dynamics.
Constant company ling
inputs required. Very
definitely the lark of
damping in roll offectes
pitt. and vice-versa. | Oscillatory convector-
istics wery objection-
shie in pitch and roll
along with instilling
to dam, then, Constitute
hard to grad hold of the
arice and heap on se-
ouly way shie to retain
neutral, Einers Lost
control, roce. | | шé | 703
7 ₆ - 7 ₆ -
0.1 | L.Tr | 0. 5 97
0.351 | 6 | Silevial priscrily to
neutral strendt response
to turbuless and to com-
pensate for the lack of
desping and effects of
desping and effects of
speal stability in serve-
rar and getch stop. | Respects to content imputs was not particularly gross. Large extitute, conflictions resultes when extending to maintain value of the states electrical to mitchin values; Missel times due to the effects of the speed chability, brisiness, and gusto. Attitude control was a problem. | was a problem. | Wea's particularly dif-
fitual to remain own the
good because of the low
days. Fourter, extitude
confrod was a problem,
while diverting atten-
tion to wise title indica-
tor countries get title
very large ettitudes,
beals over corging. | Could sower quite wall he
is required a good deal
of control activity.
Dare was also a preales
-ith interestion of witch
ent roll dynamics. | Chiectionalle Centure
was lear of attibute
Amming, that the very
camechas of the atti-
uale response to turbu-
lance and very rame to
control legate. | | | | 36 | 2.297
0.337 | 41 | felected to routed atti-
tate and turbulence. | lectorand measurer party well,
hat perfor to here more d-uning,
tofficult be maintain the destruc-
valunities, here to metch attitute
fairly alossly and attacants the
response to utritilance. | Could perform tank felr-
ly well. Could carmainly
stop quickly enough.
Developed area ettibade
acques a little larger
than desired but evolt
perform two tank feirly
well. | | Could hover quite re-
cisely, no real process
there Vertical lesting
not difficult, whose con-
trol nettrity than de-
sired fue entirelettry
cass. Some interaction be-
them pitch as rell
tymasics. | The objects ashe fee-
tures were too low level
of deed at in attitude
freally needed ones now
and moderate response to
wrobleness. Were pilot
cratrol activity required
than is acceptable or
actificativity. | | 271 | ягэ
г _е • г _е •
0.3 | A-73 | 0.456
0.453 | , | Selected to maintain et-
tithem control to pre-
vent FIO altuntions. | uering sir tant attitude costud.
ermy difficult and consolvantly
gr. file FIV situations. Pad to
articlayed salaried stopping point.
Year difficult to came to preside
horse. Encertive stiffede change
evened by galle, Control defice-
tions rether high frequency and
large capitation. | | Now. difficult part of
flows was to mandam
attitude control. Rel-
tice southed difficulty
only becomes of pror
attitude control. | Nover not to difficult and performance used to tel, however attitude control required intense pilot concentration Cost, and but had the attenduc problems of wary poor attitude control. | Must imports make fea-
tures were response to
tup bulers and supre-
dictable mes, use to
must supres seemingly
related to control lags
and lightly degree
typosics. | | | | ►/R | 6°363
0°777 | 7 | relected to control re-
spons to translesse
oscillatives are effects
of speed stability when
measuraring. | Orcis pertura monomor but remired high consustantion and constant consus with stitutes, a failulaily seed more dampiar or less lage, pressly buth, Gain difficult to hold attitude. | Difficult, Could stop
and in an imprecise may
perfure tank, but just
didn't have indired ab-
tibude control. | Tended to los attitude when attention diverted, JUTFicult time control. Ling rill time deprice of free-ten Alley, lack of natitude extrol tended to cause large displacements in horre position. | Peally couldn't half love
prefition precipally, espe-
sially laterally, vertice
landing was difficult.
Wanged to parfers task
though. Overtailly inter-
nation between Agmanics
(roll on plish and vice-
vers). | "bjertionitie features -
lack of daming, large
speed stability, cetil-
latory structurislite
in evitude and Jag La
attitude responsa. | | | | 3-10 | 0 k23
0.375 | | Relected to control still
tide uncillations and
also stilleds response
", turbulence, | infficult to saffra mana. or pre-
cisely, Difficult to cost the de-
rived stubies in the presence of
low caming and effects of torso-
lance Culiably tenurum sacothly
and stop precisely | Also difficult becomes
of difficulty in bolting
Costrad strivers. | Performs this measure
fairly wall, although
there were large recil-
lations in roll and
pitch. Irang was small or
stayed over the spot
prot'y wall. Little wing
tilt control used. | Could horse Pairly well,
but a lat of control sec-
lists was required and
'enaloyed large stillede
oscillations, managed to
land alright but agris a
lot of west resuired.
Didn't perfers the task
adequately. | This sionable features -
large attitude escilla-
tions, lightly dasped
attitude characteristics,
large attitude rasponse
to turbulence and some
occillations is attitude | #### TABLE B-II (Continued) or of the contract cont | [| | 02. | Γ. | | | | Pile co | | | | |-------------|--|------|----------------|-----|---
--|---|--|--|--| | 144 | foreseters | | . k. | 173 | Selection of
Corona Semployities | Pa serverice | 9:18 35:50 | TUT-ONE-E-Epot | Procision borne,
Terrinal Landing,
Secondary Desartes | Prevall Evaluation | | 1 | 933
7 ₈ - 7 ₈ -
3.5 | | 0.555
c.60c | 1. | datifier stak and rill
elijbin, | Air bed ansares very difficult
receive it was extensity difficult
to a tabalian chilipto, who atten-
line see civarist from the pits
with the constitution of the
wall would be used by a gret.
Unseithe these large attendes
cofficial does not collect in a
corpt damped capactar, way the
corpt damped capactar, way the
collect on the other collect in
the air seat and collect deflor-
tices were octoomly large. | | min attention was de-
voted to ethicisting
pitch and rell, for this
vasion control of both
actitude and circuitor,
was very gots due to the
high pilch sorphose.
Use' wery Littus wing
this activity. | hour difficult course of
difficulty in stabilising
the tener loops. | here objectionship fea-
ture or lightly depet
citizes dynamic in
commission with year
remaining the firstly
areas carried light.
Decommends to mache-
tory, it has eryce
actification, there
are all feating the
areas control oxid to
later. | | | | 2-13 | 0.=22
6 *09 | | | Agrone in worted large failing good, large cellilations and a gualifact. Two orac to be behave the control of t | Om stop vuldsty mi
du't emm fir atsiprie
emmetaristi v | Able to reach ower a
eyes failing seal but
cash three attention
from display for may
loc., herd more earling
in patter and soil. | one's true to wall, the cretilatory estimate absence that are because the case of the control of the control of the control of the case | The chieff-could pre-
bares are lack of daug-
ing and overlineary
characterization in
pitch and roll. As no
time tests to Your
control. | | 153 | 8.2
\$ - 4c -
0 50
- 6y - 60c
3.33 | 7-03 | 0.835
0.20 | | Caleston to coutrol atti-
side but att er vigt de
"o excito cossillativa". | way difficult to perfor with any
precision. Sittude progress to
castrol layers very, way diffi-
cult. Attribut every, way diffi-
ion and warrant action. Two-
mery to develop JF on alteral
continu. Only may evald here stif-
ulds under content was to perfor-
ficulty tare land crit citis and her
push deep item?, couldn't action
from the tast wall became or
distributy with etitoric. | Princis to perform to-
come of your stitude
characteristics. | Jament to remets over age? rathy well but a stiding elificall to contro. (In present conclusion), Used a little of a fittle of the first stress in coordination with a stiding the activities of the configuration of the stiding that a stiding configuration of the configu | Prome mean't ciffurn't,
done hert by building
with assemidal, fired,
become tried to chance
trittle certally discal-
lations that couldn't
hamp out with control in
puts, fome interaction to
trees pitch and will
quently, | Atticie contests Islies wery cipetaconis. Orth days not occiliations except to half rich first his mach oratrol over this case, | | S | 45.
\$ 15.0.22
Hig. 1 Hg.
3.13 |).fr | 0.272 | | Selected scale control escaletrities 's attempt to aroi' earling etil-
tude. Can't rake Lout without section,
attitude action, | Ordrol mat be class bear off
or very very small layer, observer wateress attacted line con-
trol. Pullt op lange violent
oscillations. | | | | One's control tale
because of inability
to regress attitude
conflictions. | | 112) | 955
15 - 15 - 15 - 15
15 - 15 - 15 - 15
15 - 15 - | 2.71 | 0.353
0.31 | ą | Edected to get the re-
epones devired to coor-
come effects of the sage. | Orall perform than fairly wall. States! remediat teritating contillations to stote and reli that had a treasure to serial temmesters, attack, the serial aca fairly quickly dampet. | could stop quickly and
precisely, the lag was
somethat amorphing view
stimesting to roll as
after the V quick stop. | Could perform task fair-
ly well. Indeed pitch
and roll cortilations
that were restained for
a while. Mayed over the
spot fairly well, beau-
ters. | Onli hover quite pre-
cuely, vertical landing
was no previou. | Objectionable feature was reali explicate on illa-line in pitus and role tables was communit irritating. Community wall demand, could noncrol attitude fatchy wall. | | Ш 22 | 303
5, 5 5,
10
10, 60, 6
6.25 | 2.78 | 0.317
0.357 | 1 | Telected to give compute
meeded in attitude, to
proclame with lage. | Could perform hash provity precise-
ty, noticed the effects of guest
a lystle but it smooth sifficult.
Could stabilise and build velo-
cities. Response to control inputs
quite predictable. Bioxiy free al. | He problem stopping
precisely and control.
ling attitude. | Could remain over the
spot quite tail. That
fairly easy to perform
these wing tile restroil
during less turn. | tower and landing to pro-
bles. | s) real rejectionable
features. Heyte attitude
was alightly responsive
to rurellows. Extled
some reals coefficients.
Attitude created was
grob. | | | #.
4, - 4, -
5.1 | ∿n | 0.897
6.20 | 2 | felerini in ger univel
attivula zasyman. | Response to control sapers of the predictability and languard. Now the study and sattest very few vertilestons. Avail initiate movies and stabilities relective, evy precisely. | Nos difficult. | Comba Yemman orac a
spot reny wall, attle
such ricely degree, so
problem with jitch and
roll and so problem
stopping on preselected
readings. West as as
small with till. Wing
till changes were not
large. | Cac howse very precisely,
Vertical landing as pro-
bles. | Attitude control rany,
rany good Electry
depost, was to nontrol,
many creditable and
ctable. | | | | R-H2 | 0 30%
0.755 | | selected to get distrot
pitch and rell conjence. | Sany to parform, any to salant
desire! valicity and while it. Can
stop precisely. He problems, | Performed the task quite
procisely, hice positive
attitude testion to
captrol inputs. No mo-
tinachle lags. | rould restore quite tro-
cisely thi resait over
apot. Whe tilt control
although one critical,
we conditioned with
with assister, elative
to the mear wind. | Hower and vertical land-
ing no problem to inter-
action among area. | Parcrable features in-
caused good, smil-
daged, positive pitto
response and roll re-
response. | | 1,20 | %"(
"a" "a" "
0.3
da " da "
0.2 | 2-25 | ≥ 357
0.354 | 3 | Selected to get programme
desired to overcome the
lage which was solice-
aline | Not mean't particularly diffical of tid return to affects of large are to caused founds from the to be caseful about making coalroid rayets. But to anisotype charge in stiffude a little sore lune routine for eithout or little work large. In the company of the coalroid rayet is the little of the coalroid rayet of the little work large. I have not the coalroid rayet of the little return to the coalroid rayet of the little return to retur | cociliation is position
resulten bronces dise't
get attibule rerezzat
quickly morage | could do this fairly will, as rual prolices. Octainster vigatility control with different parts of the turn reastive to man bial. | Awar and various last-
ing no problem. | Yound the leg in roll
and tilch to be an
objectomble leature,
not really serious but
it dil result in per-
furning the test less
precisal, than had
previously. | #### TABLE B-II (Concluded) | İ | | * lot | _ | Γ | Mir Counts | | | | | | | | | |------|--|-------|-----------------------------|---|---|--|--|---|--|--|--|--|--| | .4.0 | inneters | Sir. | ** | Ľ | te ention of
Chelmil Year Ministre | hasan ortze | alick those | Ture-Co-ex-ex-Sport | Procision from
Fertical Landing,
Jacobs by Dynadica | Chemil Dalatics | | | | | | 973
- 0.3
- 0.1
- 0.1
1 - 0. | | 5.39
5.897 | • | Selected in an otherpt to
gate comings of pitch was
rull pecilinations. | ruli orillations. Some cecilia-
tions in pitch, but roll our west
incoming | with our provision be- | soll. Sing this control used a little. | Could stabilize alrowsh in some fairly will, but obtain't Nowe precisely. Only make to had it but not with precisely. Definitely some interaction between place and wall. | Roll and pitch oscilla-
tions wary of jectica-
sis, unacreptable. | | | | | | 1,07
4,-3
0.1 | | 0.33\ | | iciscio, t. gaia control
of give rectures to
trutalizare and speed,
stability differes the
accounties | | | again in the sates
attitude, but remained
over the eyes friely | The prairies without too
made difficulty although
see fairly with with
control stick. Vertical
landing on problem. | Clections's features were the attitude we excuse to turbulence and relatively low testing. However, attitude was remaining productable but required a most deal of objection and control activity. | | | | | | | | 6.366
3.2 ⁴ 5 | | of attitute coull'attors | Could purious tuess macrones
fatraj will, but mitteria respon-
erse to turnilanes thes selay to
the ultitude respons, useds com-
ing, and so witch distribly
ulterally to perform the minuture
will. | This to be summated cou-
tions in performing talls
team became district want
to make two Jungs ar
attitude change. | Twefrend this fairly
well, 'ar count' hold
position guite as well
as desired. Tooden the
wing till control to
correct for mean wint
affects | reformed hower guite real. Yestical lacting not too difficult, managed to do it fairly well only a little interaction between dynamics. | | | | | | l | 622
7, 7, 7
7, 3
2, 3, . | t-Pb | 5.3°3
6.34 | 1 | injucted to Tile control
of contiletions in etti-
Tous. | Segone to Settral inputs wide-
symbols, will not attent in above
contacts on-litation of fairly
large explands, these togosalls
to the, build stop fairly so,
but different to matrices whosits | at desired hower p . tion | bluce calesone bas | Could hover fairly pre-
cively, but fairly large,
e-wrate govine attitud;
eventions, Could land it
alright, fore interaction
throwen roll and situa-
tue to the occiliation
nature of the dynamics. | objectionable, very | | | | | | | | 0.372
0.327 | | Julented is an attempt
to get attuited under
une resi. | Vary difficult to perform, One't
parton this metawor predictly,
difficult to communication,
every now and then then to will
up mitting confidence which
are frightening. | Can't really perform a
quick stor for form of
losing at citude control. | his this very storty and
verformed the test like-
ity wall, but attitude
was in constant oscilla-
tion. Healed wine tilt
control to help nerfum
the teak. | to too bel, at had to
be careful not so make
large figured for fear of
settin, everything into
oscillation seaths. Our
perform the certical land
inc. seilattle for exectical
between roll and pitch
squeeter. | Objectionable features
include lack of desping
very ceciliatory light-
ly casped response in
piter and roll. Very
responsive to turbu-
lance. | | | | Contra Laborate Sales #### TABLE B-III # PILOT COMMENTS FROM THE STUDY OF PITCH, ROLL AND YAW CONTROL MOMENT LIMITS Flying Qualities Results Given in Table A-IV | \Box | | | | Pilot Service | | | | | | | |--------|--|----------------------------|----------------|---------------|--
---|---|--|--|--| | Chie | Conf.
Parameters | 37.00.
37.00.
100.30 | 30.70 | 19 | Selvetim of
Overeci Semistrities | yeerretat | Quirk शकर | Trans-Oran-a-Opet | Procising Jorney,
Tertical Lecting,
Secretary Symmetrs | Cropall Excination | | 198 | 8C3
46_40,360
46_40,319
85_40,310 | 3-75 | 2.301
2.230 | 7 | Selected to get stilltude
response destrut. | Good response to control topola in
pital and pull generally, houses,
who measuring leveral touche to
run out of control power conscious
ally and want jets of that it
was committed difficult to photi-
lise. However, in general could
perform took finishy will. | erraloped a brief waste-
terlial attitude enter- | Could runde over and
21th wall, an iffi-
ealty. Wall danged con-
figuration. | No problem, Craff hover
precisely, extricted on
trol pents, Vertical Land-
ing alright as well. | Only objectionable fun-
ture was last of each
tral power in giths
which stand up
previously during a
measure and sepatially
during the quick play.
In prevent configura-
tion wall desput. | | | | 3.16 | (d)
(z) | 7 | Sciented to got the de-
sired ectifude response. | describly could partern each fair-
ly vail. Min't have any grack
difficults in initialing valuality
ted otopping reasonably procisally.
During the X measurer was distan-
ed by a gart and catalant control
at due to look If control power. | Generally no problem,
Mdn't collec my lask
of control power but had
provincily carring the X
minerony. | Could parfew this this-
ly wall but secret that
it lasted a little con-
trel power to control
rell and piet, Unset tie
wing tilt controls a
little. | Onli ione fairly pro-
ciply vilent to sub
votice. Yerisei ind-
ing sid to problem | Objectionable furture
was last of control
power, especially in
pitch. | | УR | 3C3
M ₁₃ -0.356
M ₂₃ -0.357
M ₂₃ -0.332 | A-73 | 0.3CT
9.263 | 3 | Zet to achieve jumined
afailtde rumpunes for
rumnunging as there
were very little guest
offects motionable. | Manyowing parluments may very
good and regalest very little
good and regalest very lit-
lie composation. Instru Series-
tions persully very small and low
Proguesty. | Could perfer exist wall
although a stall conset
of extension recited
to step at theired point.
States two slight limi-
tation of could lead
that consend city or
a very along control in-
less. | Quite easy, requiral
way little plant affect
and way little threat
lik trim control. | drur parterance was
very good and very little
plies effore respired. | yould still emelder this a satisfactory con-
figuration, with only
sillary employment
decidinary being the
lask of control press
when performing quick
yies measurer. | | | | 8-78 | 0 856
0.243 | 2 | Smiestad to get the atti-
auto response required. | In general this ment's a particu-
larly difficult test to perform,
however once of before solved a
lash of control power. In two
instances withting pictures to control it
instances with the peaced, indiced
could be over had peaced, limited
in ewitch power at an insuffi-
cient level. | Mės't luvo dav protiem. | Could perfer this many
war quits will remaining
ower syst very president
Used only small securit
of wing, this. | Could hower suite pro-
riestly. Furtiest landing
on problem. Folderto to
lew secont of custrol
articity Saring hower and
vertical landing. | Inole case were pitch
control power. Reverue,
two or ligaration in
micely despot. | | | | | 0.5.7
0.296 | 3 | Celetic to get Gastrol
attitude response | No peckles perferedup test, (ould
intitate est soll relective and
ctep pracise.). No excessive atti-
tick shinges livelyst, | Could perfore this thak precisely. | Scale so this commentaly
and rapidly. Didn't have
to use wing lift scatrol
too mass. | | zone sight difficulty
herering, Good attitude
response, generally the
that could be performed
wall. | | ĸ | 352
Ie ₃ -0.152
Ie ₃ -0.158 | 4.73 | C.746
0.700 | 2 | Set to schlere defined
ett'tude control for
shourering. | Air taxi performents we very
good with very little yild eve-
passetion and effort required.
Control def. ections small and
generally low in frequency. | Could perfers quite well
and there are no India-
tive of a limitative on
control power. | Performance was good
with little pilor effort
required. Very little
thrust tils trim control
required to perform burn
managery. | hover performance very
speciation a sixtum of
pilon effort required. | Configuration and virtually so objection-
able features. | | | | - 13 | 0.327
0.278 | 3 | Selected to gain control
of attitude and attitude
response deciral, | Could perfore service; quite
ecomptely, initiate all desired
relection with no problems, to
Critical led of crotrol power,
sempel very may to control, | To evident lask of con-
trol power septime.
Could perfore inserver
and story procinely, and
not develop say large
extitude author due to
lask of control. | No parties performing
sensorer. Did it quite
accurately, didn't have
to rely or wing tile
scattel teo mech. | Omit haver fairly pre-
ctally, but with a little
ifficulty, Tertical land
ing an problem. Poderate
to could access of con-
trol settivity. | Bo real objectionable
features, except for
alight difficulty in
hovering, otherwise it
was a good configuration | | UA. | 102
10 ² -0'90
10 ² -0'90
103
103
103
103
103
103
103
103
103
10 | 3.71 | 0.327
3.259 | 3 | Salerten to get demired
Ettitude responser. | we cirrisalt at all to purfore
this asserver. Could so it quite
precisely, and initiate and sha-
villes valonities without asy pro-
liess and crop precisely without
large statute angles. | Constally had as problem
but when performing the
roll quick stop case
acticed a lack of control
payer. | So proh'm, performs
this test precisely, lid
nee wing tilt orwrol a
little but was't really
eccurtial. | of setivity, furtical | Criectionable feature
is possible deficiency
is roll control power
which was a little
amorping, blooky danged
e-miligration. Very re-
sponsive and predictable | | | ļ | 213 | 0.3C3
C.216 | ε., | Calected to get response control to attitude. | So problem. "ery predictable re-
sponce, could note attacke guite
wall. Sight tackseer to shake off
past series bewring point but
that was fairly easily controlled. | No problem, and a craid
perform these quite wall
ato; very abrushly and
hold position after the
stop without any problem | Could massive quite
secretaly and one fair-
ly related, so great,
difficulty. Vise thit
costrol used only a
little during tors. | Could remain over hover
tojut without may problem
and didn't here to use
too much control activity.
Vertical landing not diffi
cult wither. | to real objectionable
features. Little more
larg desireals to belp
in measurement. Dist's
include any absence of
control power during
empereers. | | 146 | भट्ड
स _क -0.9°0
*८,-0.280
8 _{8,8} °0.280 | 2-70 | 1.300
0.208 | 7 | Salected to get the re-
sponse casined in pitch
and roll sed also in an
attempt to response con-
trol power decicionery, | Voils like to se' a little more on
tool power on it had some effort on
thinly to perform the task rema-
thme quite wars low. On one in-
ference when successful forciford-
mally end with with a gust and pur-
lost control of riths for several
seconds. This depresent that per-
formance. | New siright, fight out
continuing or effects
that council loss of con-
trol, but would like to
see more cost of power.
Performance lacked pra-
cision. | Seeis now control power
old use wing this a good
deal during this task, | | Definitely meets more
routed power. | | μń | 865
9 ₀₈ -0.250
1 ₀₈ -0.360
9 ₀₈ -0.150 | A.)3 | 0.350
0.355 | 3 | | September to certail injust during
the test very predictable in both
sith and roll. Breizer's comment
large attitude changes to futified
ratio acing measurering but coul-
ctop very early at Control (settled
to very early at Control (settled
lacense of root attitude control,
structuse of root attitude control,
structuse) are as tout bout language. | frow bates quine stone
but this was only stilly
supplies all sused no
degratation to perfor- | Bequired comment large
changes in wing slit
angle in
order to but
howeving position and
performance was rela-
tivaly good because of
good pitch and roll non-
trol. | Twee required very life-
tic costeol action, lost
objecticable resizes was
gust cirturbance in the
lungitudized and local
position of the aircraft, | Configuration is pro-
tably satisfactory with-
out improvement. Midity
amonying lack or Justia-
tion of control power
during the exist stop
uncorrers. | #### TABLE B-III (Continued) | | | nin- | | | Pilot Georgia | | | | | | | | |-------|--|--------------|---------------------------------|------------|---|---|---|---|---|---|--|--| | Case | and. | žia.
Noše | 20. | m | Selection of
Control Sensitivi*ion | Magurerisg | Quink Stope | Turn-Over-4-Spet | Processor Peroc,
Section Invites,
Secondary Symmeter | Overall Availables | | | | LHC. | 255
54_40,520
14_40,540
24_40,150 | 3-16 | 0.297
3.218 | 2.5 | Salested to get officede
response desired. | No great difficulty, did notice that shes sensouring loterally tended to get blome off in longitudinal patition constrainty. Outle correct for it fully corily configurations. | So difficulty. Owild stop
quite precisaly and re-
main over gots. Added
drug makes measurering
and quick obspring num-
shall engine. | Orald perform this Jair-
ly securcisty but had to
used compility ring stif
position relative to
beating. Used consider-
able wing tills to perform
back previously. | New so yetim, touid
parters fairly wall. top-
tion leading set diffi-
oult. | to real objectionable features, might be de-
cirable to have some-
viet lover drug, but could current for most could current for most state of frag. So-
real oridance of a last of section power, | | | | 147 | 205
M _m -0, M2
Le _m -0, LM0
M _m -0, LM: | | 0.233
0.233 | 3 | Set to gain adoquate
given and rell response
during air taxi measurer. | Air taxt relatively easy one per-
formance gent. Mart etitleds con-
treat may good and so protess hold-
ing besting or altitude, Control
dericotions relatively small and
law frequency. | Suring rapid attitude
change second to retion
a slight Anticiony in
control years. So effort
an perfuencie but it did
monatorily seen to make
rall and pitch alightly
contlictory. | Orabral maddy anistata-
ed, the serious affect on
back. Wing tilt wer van
vary madd. | Bruring, limiting and
tabular dess with little
offers and relatively
good precision. | Caly milely unphasent
deficiency was appreciate
cotoration of pich and
roll control during
very repid large atti-
tude changes during the
galet step measure. | | | | LMB | 80A
R _{Ca} -0,820
S _{Ca} -0,605
R _{Ca} -0,175 | A-78 | 6,256
6,154 | É | Set to gain adequate rail
and pitch stitleds den-
trol for the measurer
week. | Good stitleds control but tid no-
tion control your deficiencies.
Zuring six tout, Control defice-
tions relatively for in emplitude
and frequency. | Indepute ecuted pour
to do a good guick stop.
Yunied to use come vary
tills to easist in lengi-
tudinal gook stop const-
ver. | the some difficulty
mismining position
during turn due to the
their vinc affects. | Herer, lasting and takes | Out affects were mini-
mal. The mest objection
ship feature two insta-
chie feature two insta-
cated enteriors and
during turn measure.
This prehibited rapid
and prening measure ing
with the speed desired. | | | | | | 3-73 | 0.813
0.395 | • | Salarted in attempt to
ensural pitch and rall
attitude during gasts. | Mifficult to balk improvering speak soccustally. Profity much of the while of the gaffs when they get too large. But to wait till they receded and then colorant to continue. Comida't perform task provisely. | Precision directly dependent on Level of the gouts that happen to be present at any given time | Lest control once, legan
to devolup a real esti-
vade then the gast his,
gave such a large real
stitute had to really
make as affect to retain
control. | Herer wasn't too had but
every new and them got
sected with a gust and
howe for ride with it.
Hing tilt control used
fairly heavily to held
hovering prolition. | Control power inade-
quate when hit by a
large gart, abon the
garts were small con-
figuration seemed to be
relatively good but
with large gasts diffi-
oult to retain seates!, | | | | 146 | 93
M ₁₂ -0.902
M ₁₂ -0.665
M ₁₂ -0.193 | LT3 | 6,235
6,244 | 8 | Fot to antiero aloquate
attitude control in
pitch and roll. | Not bee much difficulty encounted to the trade of long on symmetric and the properties and the properties of the statement of the statement of the symmetries symmetry | Presented some difficulty in that considerally get hat to considerally get halt by a gast while trying to resource repidly can menturally combart control estimate too wall, atthough sid not less control. | And to be done with
return gamile mentures
and more had difficulty
brimsing out man wind
the to insidepate com-
inch power. Small secunt
of wing till required. | Hover was at problem,
matther was handing or
taking off, Cushed act-
lying was rather lov. | dost objectivemble fra-
ture was limitation on
control your in yith;
rail or yer limitation
id not can be present
any problem. Oratrol-
lability openiously in
question. May allet
concentration required,
Next be files with
small capalitate manu-
vers. | | | | | | 2-78 | 0. 632
0. 6 06 | 4.5 | Salar od to control tur-
buly to and affects of
large speed stability, | In general could perform back
fairly wall. Every now and then
all with a large gurt that dis-
turbed ottitude, but was always
shin to maintain noutrel. | In general scale perform
them fairly well, but
scansionally life with a
lange gest that would pre-
vent smooth performance
of saak. | Performance fairly good,
less wise tilt combrol
a secol deal, | In problem herering, ade-
quate central power.
Apparently control power
only indequate when not
grand speed, mean wind,
and turbulence components
were large. | Chiectimable feature
was deficiency in con-
tral power, in general
configuration occurs
to be fairly wall despot.
Response to twinlendo
wann't that large,
fairly low frequency, | | | | DIED) | 904
N _{C 8} -0 984
L _{G 8} -0.777
R _{C 8} -0.211 | 1-53 | 0,304
0,261 | 6.5 | | Attitude control well despet and
gost affects rinked. Numeroring
performance is good
although re-
latively large attitude command
required to managery. | Noticed control power
limitation when making
repid estitude changes
although it does not seen
to impair purformance. | Anlativaly over essent
that large amounts of
wing tilt are required
to effort mean wind
afforts. | Hover performence is re-
letively goes and control
young seems adaquate. | Nost objectionable fea-
tures are the gust
effects on airwest
position and the sa-
tionals limitation of
central year faring
rapid attitude changes. | | | | | | 2-77 | 0,431
0,434 | 3 | selected to extrol tur-
luleree and speed sin-
ellity when maneyeering. | Not difficult. Onli manever pro-
cicals and roll sittleds estion
wall one generally had no pro-
bles performing task. Noticed just
once your make additionary in one
trul power but maybe it was just
a large quet, | Could step precisely and
hold desired relocities
quite wall. Admit mosion
any lask of control posses | wall. Midw't sotian new i | Could hower processly.
Could also land quite
well without may real
difficulty. | Se real chjettreahle
famiures, some alight
response to tuttalesse
acted but not to bed.
Dynamics are quite vall
desped and workload
relatively low. | | | | | | 1-78 | 0.426
0.348 | 5 | believed to sentral
effects of businesses
arting through spool
statistity northy, also
to sontral offects of
speed stability while
managements. | Note with difficult to perform that to obtained of which and relia. Affect of the halons on picking and reliably to stop provided to some actual, not seek perform the test fairly wall. | Dida's got into any va-
merying artifudes and
performance relatively
good. | Has difficult, couldn't
held hevering attitude
particularly vall and
did devalop some strir;
large sattitude changes.
Lot of rell and pitching
motion. Used wing till
control a greet deal. | Could hover precisaly but
it involved thirty large
stitude shapes and a
lot of which workers. Yet
thou leading alright.
Some information between
dynamics, at least during
the turn. | response to tertulence
in pitch and rell and
the lask of emping,
fowe lask of predicts. | | | | 1901 | 304
H _{rg} -1,064
L _{2g} -0,788
S _{Cg} -C,029 | ¥-1@ | 0.426
0.334 | 4.5 | Salacted to get Control
response and also to
evercoms affects of tur-
bulesco. | Is general sould perform take
managementiations any difficulty.
Had to attuanted the affects of
turbulesso, homerar. | Could stop presisely and
registly without emomenty
estitudes but had to
watch the efforts of
turbulence. | Also sould perfer this
man-mer fairly presion;
but again turnibases was
stignificant. Mon't se-
tios say lask of control
power in all those manu-
rurs, lawrew did home to
use wing till control a
good shall in turn be-
mane of most wind. | | Response to turbulence
was comminat too lange.
He comminate too lange,
stitude was predict-
able in rangement to
section language. | | | on the second contraction of cont #### TABLE B-III (Continued) | | | 1114. | [_ | Γ | | | | | | | |-------|---|--------------|-----------------|-----|--|--|--|---|--
---| | Case | Car. | SSE.
Note | 14. | - | selection of
Control Saud' 1/1*105 | Many Will | Quick Picys | TerpOver-e-Tyct | President Hores,
Yest land in ming,
Secondary Ignacies | Overcli Evaluativa | | not | 105
Pag-10 850
Lag-0 750
Rag-10 170 | 271 | 0.357 | 7 | tues resposes to turbu-
issue and also attitude
eleançes when transmiring | Table to cold person this vall. There were time also let by turblecom and would also the tot turblecom and would also the cold also to the cold also col | rescally avaid error researchy without too much intrinsive, Kind or distribute to bold welcome. Also, on the X shifts stry was trying to error open gives a large stitute encurion and thought about to loss control. | conciliations but could
sold inverse position
rainly week. Bo problem | Cruis lever fairly sent-
rately as long so stri-
tule ,hanges were fairly
small cloud, get late the
much stockes, fair senus
of coulous activity. Crais | Collectionals control was the more ality to sent to a state of the more ality to sent to a state pade, but into our large at the executive and taught that control adjet to love, they time the strikes Fr. 1900000 seems to be "striky with the striky Fr. 1900000 seems to be "striky with the striky Fr. 19000000000000000000000000000000000000 | | 1813 | #0.3/19
12 -0.3/19
12 -0.325
12 -0.327 | A-73 | 0,215 | 10 | | Indepute entrol pour, (iffer;
to establish valuables, At time
estumeted either yitch as rail eco
trol. | Indeparts control immer
to develop valuation.
Fore and art notice scale
he controlled using sing
title, but central immer-
timesquate to purfers
lateral minorare. | Lost organicans and man and medic to recover.
Districts destruicement because of furtilesses of furtilesses of furtilesses offerts. | | Imaquate ril aid
pitch pertral austre,
Ter emeral momenta CL | | | | 2-17 | 0.3£7
0.351 | 5 | true response to turbo-
lance and the affects of
speed stability while | Exertises management valorities
effected by terhalmen through
patch and roll. At in general
could reserve fairly will be
lacked desired process. Once or
butce introseed translant white
may have been caused by lack of
corrul purer. | Could stop rainly safet-
ly and add't have no
much trouble holding
monvering velocities. | Defa't have too made
truthle, but did go
through some fairly sig-
villeans attitude occil-
lations (particularly is
rell), but to use ving
till a good deal. | ectivity required to hove
conceptly, Oxid last
without too appealing | Perfense to including the large and actived arms lack of control power, they be statch control input unce or refer and men't able to chiamate gerts. | | yol | 3:5
** ₁₃ :3.56
** ₂ :4.60
** ₂ :40 83* | A-73 | 0 226
0.127 | e | for for alsitude re-
eyeums for air baat. | Immingues control power to mace-
wer way restily, caffeits stdi-
ciency in both roll and pitch.
Levyal mamore way way also be-
cause dien's have labled threat
trim. | Pt portion because initial valuation are necessary for pulsa expenses for the correspondent of o | Remires concurration and the disc blow the airest's pills a lot. Liftfield to control somes of interpute course, jours, and to make threat's as of wine this is an extent to effect the deficiency in Logitudual control power. | Revering and Lability ships
no particular realizada
control tower was adequate
non these excludes. | The mort ubjectionable
fastures were (1) de-
fictions is control. The most in first and roll then reserved by one through one a protect """ the gust effects on pitch strikens. It wa- quised was pitch stimu- tion, how's control can- fully during measure to ear't, leafig control of the Alieraff. | | | | b.Pr | 0 3-,7
0.353 | 4.5 | Selected "o control at
titude response to ter-
tulance and effects of
speed rightlity foring
managements. | Amountly response to control in-
pute was acceptable. Oull sta-
billes reduction full by will are
they without no much diffically.
Attitude him of responsive to
technicuse. Next all this
pure daughter. | Not see mri Affficulty,
detiend fullwing aircut
stops there was no ten-
deser to conclust in
gitted or roll. Anogusta
control press. | Onld remain over the syst fairly wall but dif derwise armine actions carages. Incire more attitude damping. Octave Junear was to farlow, they still control used a good deal. | Bo coal problem. Onld
home guite profeshy al-
though fair security for
comirol entirety required. | A fair espons to bursa-
lence and would like to
see a little more stit-
tude dapper. Octavel
power seemed adopted,
butiled on large casi-
lations and no tendrumy
to lose central. | | | | P-102 | 0.593
0.525 | 6 | Selected to occural re-
specie to invaluese and
great stability when
managemental. | Represe to sostrol layers sot upto an preferrant os senires. Less like socialistication of senires. Less like socialistication constructions of senior special control of the senior senior layers are overchalate, very large | Could stop fairly amage. ly but it was difficult to do ormayaling preside ly. Midel notice my lack of nontral power. | Promped to do this with-
cet too men difficulty,
but did novelop some
fully significant roll
and picts artillates.
Ying tile nouted was
used a good deal for
men with affects. | Ould held position mett, but was always oscillating back and freel is deign to Let of two-bilenes to respect to the late of th | Cajortiousle features include large responsition to terbalence with the difficulty if named in partowing task procient and also the low desping in real and prich. Work switce any lack of noethel power. | | īai | *05
*1.157
.t _{vg} =0 975
.c _{cc} =0.221 | 4-73 | 0.256
u 259 | 7 | | Norticed very lick arring the air
taxi, hell and pites sittled
fairly responsive to parts. Atti-
tion response to control imputs
very lightly desped. Attractive to
very lightly desped. Attractive to
become in position and sairly large
attitudes desper required to means
ver. Limitation on central power
ver. Limitation on central power
oridest. Severe, controllability
of aircraft not in question. | Difficult to initiate the region subsected but could be couped return couldn't, initiation on calcult, initiation on calcult power ordent calcult like procumbed the confined control of attitude. | Philly difficult becomes
of mail affects on the
altrantic position, but
combrid was describe.
Futr amount of him #121
unafroil required to bold
position. | Row performance fairly
gree, neverth 7200 rept.
1244 fairly high. | Nort objectionship for
three were first the
lightly deeped, gast
condition Tymatics, and
account, in littletion
ca control loser. You
sitter ship pulci norma-
sation registed, hon-
erum, controllability
tool is question. The
lack of control pour
and the invefficient
orbillaty segmentation
a deletion that must
be Saperred. | | Lec 6 | 805
\$4,41.050
\$4,41.050
\$4,40.230 | 2-10 | n.àou
0.338 | 5 | palested to control et-
titude response to tur-
briscos ann attitude re-
sponse to measuraring
relicities. | Could perfore this task fairly wal-
and lattice and stabilise valu-
dation although it took some witer
tion, impense to turbiness was
fairly sharp, alrept at lime. | Onld stop quite quickly
and relatively precisely.
Twelst to introduce some
fairly subscantial and
rapid attitude changes. | f hover yest, fee, Used | Pairly high warkload when
covering but perfusence
Tairly good. Could land.
Eri too much interaction
between dynamics. | targe attitude response
to surbalence and the
last of predictellity
in the attitude response
to stink inputs most
objectionate features.
Seeds some despital. | #### PABLE B-III (Continued) | | ONE. | a | | Pliot Commets | | | | | | | |-------------
--|--------------|----------------|---------------|--|---|--|--|--|--| | - | roceres | Sin.
Mode | 1. | " | Control Constitution | estament. | Tick Store | Torsi-Orania Spot | Procision mover,
Yertical landing,
Soundary Locates | Overall Bibliophics | | 130.7 | #6.
#6.5%
*6.65?
#6.658
*6.65.4
*6.60.1 | - PP | 0.334 | | Silasted to get lesinot
attitude respect, sem-
sé a bit ellegisk fa
attitude. | He wal problem. Did notice come
slight lack of Control power come
though, seemed to get a little
larger plick obtines commune
there would, but in general could
passence quite vall. | Sulf purfers task punca
ably well: But a little
difficulty stepping when
lesired. | an tee difficult. In
teal hard requirements
for ving till princip. | Sittle alsopotanos with
chility to herer, sould
like to here a little
law precision. Vertical
Junity no problem. | On outlook's feature include .com left from real power and some experient of lag in attitude control. | | | | 216 | 0.348 | ., | halosted to got desired
response in piter and
relay seemed to here to
increase control seem!
'irity to oversee lag
effects. | Performed gatte unli, so problems
1910 fauthating and holding de-
arbet valuelty and didn't get
Into any sericularly large etti-
tumes. | Nort film; will except
once during I gains stop
sense! to entered central
press limits. Outlant
recover estimate se
quintly as desired, al-
though nothing serious. | Performit these fairly
well. Little use of wro
tilt control. | Couldn't have quite as
precisely as desired.
Count to best certifier
ing easy from desired
position. OrdA land
wiright. | lag effect seames to
introduce rose escilla-
tions and event2 pur-
ference was present less present de-
airms. Set particularly
responsive to turis-
leans. | | sec l | 203
24, -0.832
24, -0.498
26, -0.188
7, -2, -0.3
4, -4, -0.1 | A-73 | 0.233
6.294 | ` | Not for feeind attitude
response for mir fact,
alight worken au
oscillation abut desire,
attituse following regis
commade. | Fir tast performance relativaly
good. Entert lag is a titude con-
trol regard only small increase
is construction to perfora them.
Control Entertiest results small,
sowers a little reruse high
frequency natival regards to
yearly control required to
yearly control required to | Autorest fairly well,
and aims everyment and
autilistics elect the de-
sirol commound attitude | | Here
performance very
goal and required very
state plate research
tim. Control pend secu-
tion to guite adequate. | The most objectionable
fasture was the Lag in
statistic response and
than the slight over-
shrot and seciliation
secul the commades
attitude change follow-
ing rail4 crafted
locks: | | | | FIS | 0.332
0.264 | 4 | Selected to get the re-
spense desired in pitch
and roll, | not difficult. (and every processity. Could belt watched submit
to man difficulty. Many adjusted to make the fifth of the could be to calcults and that it was alignly difficult to stabilities. | Performent airight out
had to deep out oscilla-
time after completing
memorie. | Not difficult, could
perform teal fairly pra-
cises,; but terred to
comittee sements in
picch and roll. | Could hover alequately. Rether some variilation, same line for any requirement of the country requirements. Products account yet country to country and arrively experient laborar and vertical laborar and vertical laborar. | Objects making featurer were oscillatory enture of pitch and roll after significant attitudes change, build have to follow up to evident to courseloct. Configuration seems fairly well despot, not respective to the relations. | | | | 3 143 | 0.398
0.245 | 3 | Selected to get response
desired in pline and
rell. | Bo problem, coole perform teak
very alcoly. | Also to problem to lack
of desping, the lags did
not seem two emprying. | Could partors quite
accurately. Min't use
wing tilt control too
uses. | Some diffic lty here, but
but too much, fair eller
of compret accivity re-
glined but could held
herer position quite well | factore, seec possible
lag effects, mothing
two bat, Micely damped, | | L/29 | \$72
%_40,568
%_40,560
%_40,156
T_4T_40,3
&454,0,1 | F. 77 | 0.296
0.275 | 2.5 | Priested us get attitude
ruspasse decired. | Response to complete aways as a control of the cont | Able to stop previous and help previous actions no large utilities saying communitable, except for seen authorizations, | so difficulty, dim't
here to pely on wing
tilt control too mach. | Craif howevery provised by with - unail assume of control activity. Yestion! landing an problem | To ment reportisemble features Percentle features included in my relies and aire stable response. | | Selection (| 200
10 m 3/9
10 m 3/9
10 m 3/9
20 3/9
2 | ₽D. | 0.372
2.522 | 4.5 | Salected to ger desires
stilludo reserza, | MATION NOW LINE OF CAMPING and
PROFESSION IN THE WASHINGTON THE
BAT WASHINGTON THIS WASHINGTON
OWNERS AND WASHINGTON THIS WASHINGTON
OWNERS WASHINGTON WASHINGTON
CHILD FAMILIES WASHINGTON THIS WASHINGTON
WASHINGTON WASHINGTON WASHINGTON
AND WASHINGTON W | nd toto some large ou-
tions mailes during I
quite step that swemt is
early to dome, setting
Anguance but it was
amounts. | Could perform managementality precisely and diskit was ring till control much. | had a little difficulty in welding laboral home publish man can the activity immined the activity immined and attitude not quite as remittable in hower as would like, Vertical landing no problem. | The carillatory notice of pitch and roll and the apparent hart of restroit pure or despited that of unpredictable. Required a first nemation compression or control It also affected the presiston of feath per-ferrours. | | :821 | 901
M ₁₁ -0.332
M ₁₁ -0.388
M ₁₁ -0.188
T ₁₂ -0.0 | - 70 | 0.386
0.385 | • | Salarted to get desirat
estitude response. Stat-
-d control smallivity
to dome not the contlic-
tions that reacted from
lags. | In quanti small standers fairly hall, hydriding squet we that to call that a trivial and the same of t | Inheed cititude certila-
tives Guld perform
tear fairly well, sees
emperanties required to
desp attitude. | Performed task Thirty tall, but did get into roma medicate portlike time in pitch and roll that affected task performence nomericat. Ping tilt control used a great deal. | be the difficult to
hower, small related con-
trol legate required. Ver-
tical landing to diffi-
crity. | idea's once for the
conditatory chruncher-
istics in piter and roll.
It seems to Miret com-
trol associations com-
trol. Liket low grt
respense; fairly relaxed
toos. | | nes | 123
14,40,540
14,40,540
14,40,256
7,40,6
6,41,40,1 | *-n | 0.946
U.237 | 3 | Salocted to get desirat
attitude reaprese. | No difficulty, scale perform tead
very amouth, and predictly. Re-
tired a little but of explica-
ia rull and pitch but arthing
serious. | Could purform test quite
precisely, didn't home
say section reliain and
jetching in and out of
the quid suspe. A
little bit of conilia-
tion motivate, but
wan't difficult to
attenuate. | So difficulty, again natived some calling in their better in their better in their better bet | Could hover presidely
with Little courts
setirity. Could lead with
out difficulty. | No real objectionals forbares assept poor hat the alight certifation is real and pitch that tended to develop in response to control coronade, but two let level. Heady immost, let response to matchines, only to restant | | 903 | 103
H_=0.520
H_=0.500
H_=0.500
H_=0.165
T_=7_=0.6
d_=d_=0.1 | >78 | 0.55e
0.31a | • | Salorted to try to over-
eme the lack of noticel
power and caming in
ottlitude | Did this fairly well. Air text so
prolims held welcotties folely
well and made stop quite ; recise-
its. | jis the lenginetical
guide step alright, in
latural quick step get
latural quick subject
latural particular
visca has blue of diffe-
oult to disp, | MA's't do this very voll
by haped some large
errors in positive, hat
wave if that was due to
the attirde character-
istics or due to not
reging sless estumion
to it. Did require the
wing till a good deal. | Orserally sould do this fairly real. Eds get push of events are or bries, attle not hep; with ten extimes, response but it wants all that hes, varies herding OR, horserals automated to the bries and sense, of control activity in the horse and vertical landage. | outh think there is gain to engh control to nigh control to the first nut rail but is general could purious the tax alright. | #### TABLE B-III (Concluded) | | Caf. | nion | ×ee | | | Plut Comments | | | | | | | |-------|---|--------------|----------------|-----|---------------------------------------|--|-----------------------------------|--|--|--|--|--| | Char | Parameters | til.
Mode | 184 | _ | Selection of
Control Sensitivities | Mannerica | Guick Stope | Tura-Over-a-Sput | Precisive Hover,
Vertical landing,
Secondary Dynamics | (versil Deluction | | | | | 255
He_+0.162
He_+0.160
E+0.188
Fa*Fa+0.6
A_+4g+0.1 | LYS | 0.365
0.363 | 3.5 | | No problem memoraring, estitude
steely depos and hed sufficient
control power to pursum if valid, | Communic on five management fing. | remin over the spot but
that was due to large
drug retour than any
stitude chapest-ristics
like perfers the task
reasonably well though.
Ming tilk assist! was | alight deficienty in con-
tral power which is accept
chic. Weeks like to see a
little bit mare control | power, Good Smil of | | | | 11425 | 805
Mag =0.504
Leg =0.180
Mag =0.199
Tg = Tg =0.6
Leg =0.1 | 7-75 | 0.33
0.33 | • | despited and what any | Esquase to cratral inpris was pre-
dictable, well supple fueld event
op a smooth constrate valerity
and step presidely. To apparent
lack of orutral power, | | Sometak new difficult
beause of high drog,
but each dauging in
stilleds makind perfor-
rence of teak fally
vall. Bid here to man
wing tilk a good deal. | Culy part of that that has
man restrictions obstate
formed to be a lag that
prevented desired quies
respons in attitude nord-
al to overcass guits.
Institut perference ado-
quate. Fair ensent of on-
tro, activity invalent. | was approved lask in
etilizate propesse when
hovering which degrated | | | on on the second of #### TABLE B-IV # PILOT COMMENTS FROM THE STUDY OF INCREMENTAL PITCH CONTROL MOMENTS THROUGH STORED ENERGY #### Flying Qualities Results Given in Table A-V | _ | Γ. | , 100 | Τ. | Т | *Liv; Commute | | | | | | |------|---|--------------|----------------|-----|---
---|--|---|---|---| | 24.0 | Seef.
Personaturs | 15s.
Mode | 140 | ľ | Colortica of
Control Scientistics | Moorvering | yelek 21494 | Turn-Ordens-Spot | Pro-Laion Horar,
Yartical Landing,
Secretary hypertica | (repel pulsation | | .13 | 10;
10, = 0.3%
10
20, = 336
74 = 0.05 | | 0.2%
2.1% | | Malested to get the et-
titude program accord to
corress the effects of
longing. Wide range of
control committees
apparently enticinctury. | No problem intermily, but wasnessering firmers at time last emporary at time last emporaries that extends to ease values, it would just begin to rise without control. Also satised lies of control away the problem of | dure again after remeits | He problem. Wing tilt
control used a little to
help is the turn. | Horse not difficult, Yes
tiell leading no problem. | Chiectionable feature
was noticeable less of
duatral yourr during
features construers and
featured quick steps.
Oliver than that it was
a good configuration. | | 142 | R14
H _g = 0.336
AH _g = 306
T _A = 0.23 | A-73 | 0.320 | 3 | But for desired attitude response for encourering | Very small stitleds steager re-
searce to surelas velocity. The
to articipate surement the desired
elegang position hat in general.
The air last performance was good
Filst workland law, do lad an
siffically halding altitude and
heading. | Due ind honourue cottond a
a slight deflectory to
control power, pitch
particularly, but at an
time less control or the
attention or did it re-
acter very much pilot
activation to evoid get-
ting itte test hind of a
stumbles. | Helthand was law and | invering and Landing use
execution with very little
emetral artivity required | | | | | ь. д | 0.356
0.235 | 5 | delreted to get the al-
titude response desired. | Seed response to control impute,
on problem initiating case otheri-
ting velocities, possibly only
seen or bujer and used a small land
of control posses when yielding my
after mering cheek long-buddenly,
but these were relatively after
offsets. | Performed those with me
difficulty and messed me
ladk of cortical power, | Dany to perform tiend
ving till only elightly. | Het difficult, fide's
swiller my last of centre
poor birs. Workled
landing not difficult. | Did motion a clight land
of central puner case
or twice but nothing
serious. Phil despot
configuration. | | 14) | 203
H = 0 395
E _H = 305
F _H = 0.20 | 2-78 | 0 303
0.793 | . , | delegand to get the at-
litions response meded
to evercome the diagrag. | Conceally could perform team well. Once or twice unlimed the name peaced up aligntly by the parts while numbersize. Also, there while numbersize, Also, there headed to be one olight justice—pteakeny when arresting valenties had a necessary only and perform this team fairly well. | Dide's esscurior ear
problems have but use
eare'n's whose piveling up
to stop the metion | Performed this tank quit
wall with little diffi-
multy. Mid's have to
use wing tilt control a
great deal. | Never and vertical land-
ing so problem. Could
perform beth accessibly
witcost much control
artirity | Were time when lack or
control power notions
and to meth uties in-
puts assembly in order
to insure that large
yitch utilizing urren't
developed. | | | | 2-16 | C 254. | 4 | Delected to empress at-
titude damping and get
desired stillude re-
spiller. | So problem porturning tests. Section does alight absence of contral power wise measureding forward and attending to arrest measurement of win-time, but generally small perfers those manovement quite occurately. | Controlly so problem, especially laterally, separately laterally side through the trying lengthstall grick style reditors falliff earliers in control your was retained for the arrost former was the despring to despring the side of | So problem, wing tilt
emetral und most to a
Alight extent does toru-
ing over the oper. | Practicus hours and wor-
tical leading and diffi-
nots to information
enong dynamics | Our clight objectionship
feature was the understal
defletiony is central
fromer. When't a real
tig problem, however, | | IS. | 2C)
H ₁ = 0.3%
AH ₂ = 50%
T ₂ = 0.20 | 2-79 | 2 297
0 251 | 2 | Solicited to empress SAS
and get too allitude
response maning, | So difficulty, way yet, risale
sillings responsible to colort and
clostline valenties with as diffi
sally and stop proclosly | Con step structly with
so apparent lack of oss-
tral wearst. So large
attitude actions. | Could perform quibe us.)
Son t here to use the
much wing tilt. | So problem. Can have precisely site little control sation. Vertical justice lite one to ensure supplicated precisely, Securitary dynastics — Zo internation | Do edjectionable
functive, Percentle
features - protribile
features - protribile
attitude response, los
response to turbulence | | | 30)
F ₄ = 0.300
dH ₄ = 306
F ₈ = 0.3 | 3-13 | 0.310
0.233 | 7 | Selected to get desired
attitude response. | Difficult to beld longitudes when to hank of
when to be been of a lank of
eastron power. Attitude assemble
despite, but per bits gust also
townsome amonging. Dreshper
large stick-up still
beds when,
arresting whently because of
deficient control gener, | Pifficult to martral
partiam and volumity
presimaly. | At time ordin't poi-
tion pitch atilide or
desired browne of the
parts. Had to use ving
tilt a great deal, dif-
ficult to lead position. | Could generally honor
position but hims of
own or twine. But Lee
influsit. Security
typesies - Se interaction | Objectionable fractures.
Berious defictories in
eastral power. | | uń | 625
P 0 340
day - 305
Ta - 0.05 | 3-71 | 9 246
3P2 C | 6 | Selected to everyone ten
SMS and get desired at-
titude response. | Could stabilise valenties fairly
wall, but arised deficientse in
control power periodically. But
own difficulty cortribling piloh
attitude, tembel to develop stage
pitch-up angles. | Could perform subtash
fairly well, but had to
be energia of pitch
Couldn't make impute too
shruptay | Side't have may problems | , botiond a lack of control
leavest. Attitude clay-
girk to responding | Sutionable deficteday
in control ergent. | | | 10°,
H ₂ + 0.340
E
44 + 30¢
72 + 0.2 | A-FS | 0. % 7 | 4.5 | Set to address attitude
control userosary for
margreeing | Performed tainly unli. Balestiely large attitude energies were required to encemon the drug of the sirvant. Occasionally get blown off grames truck by gette. Confrid energic quite adequate for measurery ing subfers. | chalges. Billord coultry)
course deficiency a few
time newclarity newles | Registed come offers had
considerable ving this
do offers the mea vind
offerto. Control marrot
was gaile adequate. | Perference use quite
good, only a low level of
pilot offert required. | Attitude dynamics were
Pasically good. Only
problem use that contral
was periodically defix
circle. | | | | 3-76 | 0.3NB
1.2% | | Delected to evercome
damping and to get do-
eired attitude propuser" | So difficulty. Could half destroy
valentiles and stor protonly has
or tyles attitude get bloss off and
anded the natural number to re-
cover rapidly, set a major preside | Performed this that pro-
cisely, hald attitudes
and relicities Wilsout
difficulty | Performed quite well
without too much sentiral
activity or too great a
continue (tool wing til)
a good bit, kenover. | Precials: have and var-
tical lasting could be
accomplished precisely
with material control
activity. | Lact of control pumbr
whose minumering,
Aumoring, but not a
unjur deflutionary. In
general, the configur-
ation was well despise, | #### TABLE B-IV (Concluded) | | Ţ | | True | T. | T | Filet Courses | | | | | | | |-------|------------------|-----------------------------------|------|----------------|------|--|---|--|--|--|--|--| | C: 50 | | cris. | | 1 .4 | ٠, | | | | | | | | | 15€ | ! - | reviter: | Hi 2 | · · · · | 1 | Selection of
Control Sensitivities | Manymering | Quick Stoys | Ser-Cyer-a-spot | Prortains inver,
Vertical imming,
messessy Tytemica | Oversi' Louisstion | | | ļ | 100
130
19 | • 0 900 | 1-43 | S 23 | 1 | leace. | Cred perform fathly precisely.
Instalence effects strong, once of
trice method deficiency in please
course mement. | rrating former value | my med to use wing the a
good bit. Pitch, rol.
attitude perfiletions
fairly large. | Not distinct, Vertical
landing OK. No major
taturaction. | Response to tribulence
and alight Assistancy
in control pure taxoy
ing. Presistable acti-
tude response. | | | | 14 pt | 9.5
• 0.902
• 306
• 7.05 | 2.74 | 0.36 | 1 | Selected to get desired
attitude response and
realis to overcom tur-
bulence response. | Could perfore fairly well. Notice
flight seck of control power when
securrating forward. | Gould perform fairly we but altest deficiency : concret power. | to memerately difficult to
a perform. But to water
affects of mean wind.
Like were damping, Used
wing tilt control a goo
bit. | off decired abvering position. Sertical land- | Response to turbilence chiectionable, slight deficiency is control power, | | | | μ.,
γ., | 904
• 0.902
• 304
• 0.1 | /-ns | 0.313 | 8 | Set to estima defina
attitude castyre for
mnervaring. | Difficult to mitain large atta-
tudes requiral to matain such
city. Bottond so control power
deficiencies. Could step findly,
resussay at desirat print, Re-
quired pitet concernstion, and
besiting and altitude central
sufficient | Lifficult bases of
large attitute changes
required to start and
stop motion. Control
power Landquate to main
tail desired states, as
during feward metics. | Alegair control power considerable concerna-
tion required remains or position makes makes beauty considerable wing this required. | stat position disturb. | Manntary indescretes in control your during color stop objection able. | | | [522] | | | | 0.353 | | relected to corrected unping and attitude response to turbulence. | Performed without two much diffi-
culty. Noticed slight defictency
in control year. | any deficienties in exa-
trel power. | Moderately difficult do
to large drag parameter
Used wing tilt a gord
deal and but to meatter
tilt ample meter closely | attitudes extensing to
sold hower. Could last | Eignifibul response to
trobulence and none de-
ficiency is control
power, | | | | K. | 0.575
575
0.2 | J-73 | 0.591 | 7 | 40t for manururing. | Measurants fore are all difficult became of lask of yield control second. Could control ground tred fairly will but performance very your recesses of lack of attitude cours.). | perficult to develop de-
sired spreads. But inside-
quart pitch cortrol
amount during resid atti-
tude changes. | Considerable wing rift
to offset mean wind
affects. | Bover performence thirty
good, control valued
second adequate. Magnet
problem were gusts artise
on free parameters. | Dynamics fairly good.
Dithered by lack of
fisch confrol norms,
particularly during
quick stop. | | | | | | | 0.3dt
0.204 | | Selected to routed turn
bulence. | No problem performing. Had to
counternot affects of turbulence,
however. Could stabilist resloci-
tive and stop precisely. He
noticeable lack of coursel moment. | Poe too difficult. Per-
bulence effected preci-
sics, aligntly. | Scoothat difficult be-
cause of last drag
parameters. Pa formed
test fairly well; yea-
ever, had to use wing
tilt a good deal. | Precise hower required
apprecisable control acti-
vity and concentration,
Vertical landing not too
difficult. | Emphase to turbulence
sotionable are attitude
fairly well camped. | | | - | | | 3-80 | 0.3%
0.337 | • | felectric to get desired
attitude response to
control turbusene
effects. | Ould perfore quite wall and
dis t notice my sack of partrol
smant. Bluck and roll scenariat
responsive to turbulence, but very
presistable. | Orale perfore without an
real difficulty. Even
that manuscring forward
and pitching to skuptly
soliced no lack or con-
trol magnit. | ho question of control
lability, but had to
ture slicely to remain
over soot. Yead wing
tilt control carefully
ask occrdinated it close
by with direction of mea-
wind. | Could perfore hower quit:
wall; vertical landing ar
problem. No interaction. | (hip objectionable for
time is stillude re-
sponse to technically,
but not bed once. | | | 1,5 | - | 0.979
304
2.1 | | 0.148 | 9 | tack of metrol ament
ands setting remaitivity
meaningteer. Used Stick
as ource? controller. | Very difficult, performance pour
because of inadequate control
memori. Here lost control of air-
craft, however, | Couldn't perform because
control moment inalequate | Mifficult; large wing-
tale requirements. | Nover performance quite
difficult because of in-
nceposts control comert
and effects on aircraft
position. | Serious deficiency to
yitch moutrol access, | | | | | | | 0,369
0 340 | - 1 | Salected to get control over estitude response to burbulence and speed respitity affects. | attenute turbulance vilects. | Rai to attachate attitude
turbulence response aut
could build selections
relatively sall and stop
atruptly. | Enumbet dirituit. Pitch
and roll drifted our
Suring turn because of
lastequate because, Used
Wing-tilt ocutrol a good
deal. | Bover difficult, but could be performed well with a smeldership etick activity. Vertical landing could be accomplished out regulard absention. Home literaction between law gitted makes and laboral dynamics. | large attitude response
to turbulance objection-
able, knoises hack of
control power once or
twice. | | | 31 | 301
 |
0.979
3%
0.2 | | 4cs.0 | | an Illation. | secritive and lightly desped atti- | Lent arment 11-to-40 | | Error pari creases ade-
grate but required agree-
ciable plict affort. | Four attitude chrya-ten-
intics - high gust semel-
tivity and lintuations
on control moment. | | | | | | • | 5.859
5.859 | i li | | culd initiate and haid velocities
fairly well but constantly atten-
sted effects of turbulence. | milence effects. | Could perform quite well.
Was tendency for ritch
and roll attitude to
wrift off. Wise-tilt con-
trol used a great deal. | Could hover reasonably
wall but fair amount of
control activity required.
Vertical leading could be
accomplished accurately. | Mends militude damping
or reduced response to
numbulance. | | #### TABLE B-V # PILOT COMMENTS FROM THE STUDY OF LONGITUDINAL AND LATERAL INTER-AXIS MOTION COUPLING #### Flying Qualities Results Given in Table A-VI | ۲. | - - | -T | _ | | т- | Place Comments | | | | | | | | |-----|---|-----|--------------|--------------|-----|---|--|--|--|---|--|--|--| | 1. | | • | m 1-e. | ١, | ١,, | .} | | 72/2 | :::::::::::::::::::::::::::::::::::::: | Teruston Priver. | , | | | | - | 1 | 4 | 16.
!* | | L | Cettra celetrivities | ************************************ | faller from | Train gravity | Pertine Linguist,
Encorary Lymnics | Overall Estador | | | | .4 | 1 101
 dg-2
 Lg-2 | | 4.7 4 | c 34.7 | | Eat for cetting seature
Proposes for air tast
manny of | Principane during sty tay tay
agod vith a militan of reals of-
fer losted reflections win
rector and I and the Desputy | Setions consists between the price and four word his caulain rate were developed. This was expense world and required control purposting. | Processing was good and properties when little and the state of st | Nows perference we see
good with may little con
trul affort requires
control cettacty was low | correll muits peer ma-
cept dime making regit
attitistic concern us
amount for cross cou-
pling primers pitch and
rul may. Somet re-
rated to the amount
rate or the appears and
to the control topat | | | | | | | - 1 | 0 299 | • | Selectri de pot desiroù
attivade ratio | her difficil attitude proposes
where, smooth was every gar
litchie, one compile widens
but so cause stream Cange in
either pitch or roll regular | controlly could perform
fairly sail, hower did
a tut that who trying
to arrest which less
to arrest to it troduce ream
errers are to utilities
supplies | Are a one recession is
an area of the control of | Provides some and on-
tion leading out
difficult for oil and
pitch interaction Hd
after protoil assemble 1
the gives stoom | Only objects which control to return to return to the und lytter interaction in quick stops however, that a rot a significant processes | | | | | | | | 0 .91 | | between avoiding exc.to. tion of attitude d'a- timbacces through cou- siling and by ag sale "o com.rol adequately | impercy perteretion or control topote, but presently, at then t | could perfore them pre-
cisely. Here: got late
any trouble and unid
perfore them shout as
precisely as desire!
Occaling
entidate but it
if the them to the than that
mack offices "o could as | wirg-tilt cantrel to | Precision acres and erra-
lical lastice as problem
Attathe interact or
through two cougling. The
coupling was related, but
dict to require too much
afform to control | Coupling we switten non-
reasing some offers to
control made semenat
swaller control imputs
to amp dure the effects
of coupling, but could
atthe performance rel-
atively well | | | | e. | K1 | | | u 346 | | tro; response for sett-
talking elected atti-
tion | During air tasi wa saunya by comping between girth and sold and sold assertion degreed which it to work a grown for the many task provides. Also, we could not increased at once on a great and a sold assertion as degreed assertion. | Fisch the reil impring
the meals expended
Control of bradiation
degreed because of this | they shall amount of Areas rotate on we re- | Precision cores performe
we fittly good but had to
the care to the con fre-
querry, meal) confirs
injure | Not impossionable feature was the naupling totawen the pitch and roll are fairly with and roll are fairly lightly south to the fairly lightly south | | | | | | , | | 0 54 | , , | Selected to jer the
attitude resignes outle
art side to any excite
the acquire | Could perfore that cointively man with price and roll is taking the original terms of a start motion. Fair amount of section to see device, and include, to hold releasing the discussion of section of the t | wasn i foo eificul.
although tended in put fo
amount i lover rutes in | proceeds as meters dis-
ficulty like us the
star till nutral | tical landing not tec | The counting is organ-
tioned a new requirer
some effort to ethomate.
It and ecurous wingestuby | | | | ιc; | 903
&_ &
0 25
&_ / *&_
275 | . , | | 0 43
0 43 | | Munited to get water
stilling response | Sotion over smil cociliation to
both pitch and roll due in aguarant
metrol complies, but but are low
er and no diffiture, could
pilors take precisely rethrot
excess, we stitude charges | Small be perfected gre-
ciedly Golding Win'-
detract from ability to
perform tesh | pmi difficult - Dould
yeary artificie - 1757 - 176
trol culte well | Pecialin bows at 1 mon-
ties, lasting not liffi-
cult. One forested in
between pitch and roll
and on one, but at a low
lever and not difficult
to control | Coly sicily objection-
sile feature is the
empling | | | | υ. | 761
76, 1 16,
95
18, 1 76, | ^ | |) %c | | ont to acuseve Seesped
Teaproom Tos madrixments. | AIT tail performance was good Could hold ground there and would desired pointer the entity Cubertail Artifections received what had by through entity and the trough of the trial and | Presented no particular problems | Yer, listle term medler/
For turn over a smot | Previous commer perfer-
mance very good with
minimal bilet enforce re-
quired. The dynamics and
control injusts of one mail
did and affect member
units | sty for dra, swallfield:
free Are Acts Bong and
constitute and and constitute. | | | | | | • | | 0 29) | , , | A'titule retea | real problem. Communeyee, and | sari presidenty Scar | Performed this quite
accumitely tred wing
tigs curtrol to some ex-
sent | "reciation hower aid artical landing no grob as
Econodary Committed - the
quantitativity sums to re-
articly be feet operation
with that you level, not
difficulty | Ease Place idjection to
the implies but this is
not a hid seculas | | | | | | 3- | | . « | | a"" fude response desired
unighting didn " have day leffect us montred assess-
tivity | | nisely both in X and Y
Fuller the slight Dou-
sing but it really
lorse f affect control
lupage | apting and standarism
ly close to the sport | hernition hower and rep-
ticle landing on membras
Recordary Symatics -
Localing is evident, but
not a hig perbles | To real objectionals frotures Coupling in acticospie, but doesn't present any great dif function firmities despré configuration, easy to control | | | | tes | 1801
14-2
14-17
14-17
14-17
14-17
14-17 | | - 1 | 9 2 3 | , | | tur of sir toxi Could be la ground
track give well and stop at on
sired point for ore motions were | coupling between pitch | | Proceeding hover perfor-
many good and within coc-
trel activity anguismd | The objectionals feature with the control coupling during spid artiful ranges and area of control liquids such amount occupal inputs are featured by the control out of the control out of the control out of the control out of the part of the control out co | | | #### TABLE B-V (Concluded) | | | P1372- | | | | | Pilot O | | | | |------|---|--------------|----------------|-----|--|--|---|--|--|---| | ^4.5 | O. of.
Throughters | 413.
Hy19 | 2 | 77 | Telertion of
Loreral Secultivities | Henouror: L _a r | ditor sees | Turk-Over-4-8578 | Procising Names,
Vertical Landing,
Secondary Dymades | Overall Prejustion | | 10 | #1
1 ₄ - 2
2 ₄ / 1 ₄ -0.24
1 ₄ / 4 ₅ 0.25 | 3-75 | 0 2th | 4.5 | felectef to get areired
attitude crepanne | Attitude reposes fairly related, but appears also emust of coughing present deprically octioned pitch impute when solding and "for viron disturbing and required some attention Couch perform ten tank adventure, but attitude overland required some attention." | though not too precisely.
Coupling introduced at-
titude motions that were | | ing so problem Fitch characteristics affected | Complian was significant
sough to disture sir-
craft and require men-
attention to attitude
control than would like | | | | £-163 | 0 310
0 960 | | Selected to get the re-
sponer desired and to
welp control the effects
of "supling | Occardity set too fifficult Could massurer Logitudinally and laterally with precision, but very definition; some acquing effects that handed corrective toputs | | Not difficult could
perform it rupidly and
precisely. Used the wing
tilt austral to a limited
extent. | | like rate empling | | హ | #5.
Kg = 6
Lg = -6
Yg/Lg = 0.7
Lg/Hg ==0.7 | 2-78 | 0.358 | i | felected as a computation of the control stitude and teach and that which ended as the vital state and that which and such as the pitch and such rule promase. | Difficult to perfure Lot of some what superdictable attitude motion both in pitch and roll against a lot of it is due to pitch and roll area foot into some farily large attitudes. Con't perfern this with much precision. | Associate by coupling. Can't | titude actions, a lot | Precision home and ver-
ticle landing not two
infficult, not less pre-
ciete. Seems to be a Le
of lateraction between
putch and roll which is
quite disturbing | (tjersionable fratures
are the large amount of
coughing and the repla,
fairly uspendictable
response that it brings
about is pitch and roll. | | ωı | 802
N ₂ - 2
N ₄ / 1 ₂ -0.22
S ₄ / N ₄ -4.22 | 3-73 | C 142 | | Sciented to belp get non-
trox of attitude outli-
lations | Princit to perfore precisely,
Fit h and roll to constant cecil-
letton. Cignificant amount of
compression required to maintain
ground relative rule a sop
accurately Sear relatively or
predictable union in _,tch east
roll due to coupling. | Difficult to perform pro-
timely, must be very care
ful showt control impute.
Navy to watch attitode
closely when arresting
pich ctype. O' lito
Tairly large attitude
oscillations | | Can perfore norre, but
but the attitude uncor-
sices are aignificant
Fair amount of inter-
action or scoping due to
the light desping | Objectionable features-
caupling response to
tumbulence and lack of
deeping Difficult
mass to control | | ಚ | BC2
Mp = ?
Mq = -2.
Mg / 1g = -0.25
Mg / Mg = 0.25 | B-378 | 0 ha/
0 399 | | Seierten to get control of the piton enn roll oscillations | Fairly difficult teak lot of
situation must be paid to attitude
enothed. Difficult to shabilise
valocities and stop precisely, bu-
ous be done seequitally. | Onn perform tank, etop
Frecisely, but took to
tricnder a Lot of gitton
miles and roll motion
hars to ectry about sup-
pressing those oscilla-
tions | Pifficult to perform broases one's look away from attitude and oheat the seeding inclontor without introducing fairly significant attitude errors. Use the wrag till to modern's extent. | Precision hower and land-
ing sot too difffoult,
but both required atten-
tion | Objectionable features—
Wagenes to
turbulence,
complies, lact of daug-
ing Difficult case | NATURAL PROPERTY OF THE PROPER ### BLE B-VI ### PILOT COMME INDEI en de la completa # : THE STUDY OF LONGITUDINAL THRUST-VECTOR CONTROL unionistis or on the property of ### Flying Qualities Results Given in Table A-VII | | i | M.M. | Γ. | | | | Files & | Tiral. | | | |------|-----------------------|---------------|----------------------|-------------|--|---|--|---|--|--| | | Stade
Statementors | Tie.
Vario | 3. | * | intersion of
Coursel Seraltisistics | headwriting | de Repo | (megan-espe) | Speciation Hover,
Yestimol institut,
econstany institute | Twall Laborion | | ::3 | NCL
Yest ang/ess | A-P9 | 0.30y
0.7% | 2.5 | for sale to | One certal and low gust course.
Living short all ames, Longlive,
Leal age test asserter thatty may
with ving tills notwed sithings in
required come achiefut for the star-
register consultation of the star-
or destrong register and the
cover longitudiabily. | belatively may but ma-
quired antiripolity to
stup at Coulsed yeldl. | Perfection very good
and respired very little
offers, Ping tilt control
used symmetry. | Precisive home particu-
ance gails good with vary
lattle offers reprivat.
At your o'light 'endmay
to get late Lingiustine,
praities estilation with
embrailing parties with
wing threat tile. | Drawil, was got con-
figuration, rectical
very little effect. | | | | 2-73 | 5,314
0,742 | ٠ | | but if stranging rotes but
mail side't bose tot put
difficity. | socies" art around or | tirely sell me second
y a list in an control
terms and of seconds
and lost however tool- | Dri cifficult, our was
vernical landing | Dejectionable feature
prime tily slop rate of
change in tweet vaus
for angle. | | | | 3-10 | 6.742
6.742 | ۹.5 | | decorating out difficults with
Interested Circuit copies motion;
Could artistly investigate and
other matterly processity. One-
dically these relative rate out
interprets but in grown, which
offset ability to minorous. | Industr difficult dre to
also rate of sings of
librat vertic majo. The
to load long testical
section of great dash with
threat vertice majo con-
tract, it is stop where to-
stract, it is more resulted
in long period of north-
lating such out forth in
position. | This was 't siff cult
wish this men wing till
was like your mail
amplicade notions
throughout these "hans. | Jemisjon hover tot dif-
ficult. Rile of tirest
vokalca was atfillent. | Cijoria al fuskcu -
elov seko ci dango
meninda in termet
cortor deglo | | | 861
F=10 Seg/eed | 1-73 | 0.31k | • | na idojio | Could manage fairly wall cith
predicts. But in to commons com-
flux about building to proce which
were too large becomes of fund-
quate rectifier gate of them-
quate rectifier gate of them-
flux and the second second
larger rate. | tre difficult to partors
him mir teal, Homend to
this previously mill
Combring these verter
such and "orth got off in
vestion" e.metal, | Belativay may using
times vector ample | Oulf howe exits wall
him only thrur wette
made. Vertical loaning
was't difficult. | Other treate procure -
femile little to see a
little higher threat po-
sation rate. In expent-
ing valuelities bed to
lead cortactory prod-
act leadings of the ro-
bation rate. Percental
resurrage, articular
attain James! | | ш | 303
148/14* | ≈f\$ | 0.329
0.246 | 3 5 | en seate | could massers quite precisals and
someticity using part tract exists.
About to constitution without posters
and stop precisals and cours at me
profition. New justice attention and
to be just to existince coursel. | Omid task and stop
gul-kuy and greefeely and
hold new pre-tion guits
emaily. | Thist this we arrested easier to perform these when community products the estimate changes. Much threat rotation raws tains a lost, | fise ret difficult, Could
teld position of all timer
wing firsty related
threst rector engle injects
Vertical landing also not
difficult. | forcers to client
drawfact was tigant | | | | 110 | C.316
3 PR.2 | 3 | | could measure formers and act
vitarus difficulty. Like increased
threat "until or male, but 11" a to
the point them a "s alone" to
colds. The stor personal and 2018
when it is positive vitarus and 2018
however withing measure and
threat restrict but one feel longi-
mental and another threat one feel longi-
mental and another threat threat and present and
formation and another threat and feel longi- | To attricely, lone here to lest impute by open-
ting on healing or presi-
tion, rates as such or
with lower retition reason on the wait with almost
last master will at de-
sired posttion, rad then
must thrust
uses. | Der Propu | Procision hower and land-
ing med cifficult, | Slightly objectionals forume is the utnet forume in the utnet notatic rate is omewith too kigh. Affects precision with which thrust vertor angle can be consided, but in great a le good a haffectation. | | · 25 | 200
7=5 tag/so- | ~71 | 2 329
0,285 | b. 5 | BOX ZELEKTED | could perform removem relatively,
well, elitorigh had to meter offering
of curre entire is prelitive. These
of perform out posterally hild it
was assessed by moral posterally hild it
will be a supplementation of the
performance of the performance of the
mental entire with the sour rela- | POPULAT TURBE DATES | is too fifti mig to
isoform. This it's small
slat each than if no
independent thrust rec-
tor control. | for lifticult, could re-
main within the symme-
ralatively will. Profes-
tions thanks reaction
rate | Eller rate strange of
the art vector sugla we
referetionable Also high
drug made at surri-mile to
content, authority to in
just communication and
just communication and and
just communication and and
just communication and and
just communication and and and
just communication and and and
just communication and and and and
just communication and and and and and and
just communication and and and and and and and and and an | | | | ≱10 | 0.329
0.846 | 5.5 | | You'd serious measure raissively
peal as' hold reducting oftense
hand fronties. Entire pet into any
broadle but also't have ruce re-
curre capacities. Noted that little
hanger threat rotation rate. | Couldn't perfore that
preside large wall, high
frac rectires large
changes is thrust rectur-
cagle to datage value ty-
leades to me stort de-
sired stopping your be-
cause or live rotation
rate, than certifate both
foll furth in position, | Sudian's seriors ters on
productly become of high
area and wind universe. | Tenderice homer and to,
led, the would live a
larger timed meet or
rate. Various leading
and to, difficult. | Discriminate function . Rais true man number carriers in annument carriers in about a man annument of the state of lower thanks results were less in the little pitching annument in the foreign annument in the rectains ann | | 115 | py.
7-10 day)aa | 1-13 |) <u>129</u>
2.46 | 1.5 | 801 1218TLD | Stall measure engitestably enter
presently, stop failty security,
and not some subset to made
difficulty, but I greety med on
difficulty, but I greety med on
threat vector angle to nated
position. | Could step gathe pra-
cionly and registly with
these sagle energel,
although was sifficulty
to ling position stars
plopping, closed threst
vector control about
mechanismy. | Able to perfore some account of years and that wester angle that muld have under attitude content place with the title solution and perform the title solution of the title solution of the title solution of the | Precision bewer was most
difficult part of sub-
tasks. Outlet's really
skey wittle equips the
whole time, but slow to
\$4. | Not able to cortect as
normalists as could have
not nick williads be
course mys list with was
answhat too sing for
this high drug | ### TABLE B-VI (Continued) | | [| nim. | | | | | inlet ? | raed e | | | |-------|---|--------------|-----------------|----------------|--|--|---|---|--|---| | 20:20 | Tel.
Fortestors | Tin.
Poće | 10. | ۳ | Switchish of Desiral Constitution | Musevering | hises Secre | Stats-Over-a-Stot | Precision Array,
Terdical Landing,
Secondary Dynamics | (remail Evaluation | | ę. | 5,73
7+29 čeg/sec | 473 | 0.375
0.275 | 5 | ect saletie | cult and requires constant effec-
tion, feing able to independently
conincil inogitations pression site | ally required consider-
able entirepation and
could not stop very | Pertines quite high due
to quet and man stad
affects on high aircust
man. Thrust vector can
trail belond amendan but
will districult bank | Precision have perfurn-
once fairly good; havene
required motivate writ-
lead, Used thrust weter
commal to control longi-
tudial positive during
have | dost chiectionable fea-
purs was high gust em-
etitivity in pitca, will
not position eventual of
aircreft. Integaciser
thrust waster control my
were belood e-emests but
will required consider-
site pilot workload. | | | | P-73 | 3.329
0.25% | | | Sold perfure inquinital secu-
vers quite consectity, sto, yea-
ciety and hold coatier fathy
wall, and new stitude chaque,
lances all control figure time
unity just threat sector and/s,
like righ threat rotation rate | cycle perform quite sail. Cycle sectors quite performant sectors reprishly seek build new position relatively seek. I con life only you had you assettly when to writing the correct rotation. | Could perform this better
these controlling year-
tion with stitute
shapes, but correct
position errors with
repairing | Could stay within square
most of time. Slippel use
slightly every now and
them, but generally could
hover practically. Fo perb-
ion landing. | attitude stability. | | | | ъ×n | 0.23C | 4 | | Could manager limited indigentially rele
titude will and stop precisely, on
bothered by large draw, partices
local laterally, and by effects of
great acting on attitude. | even medically and build | prosition quite well. On perform task better with TAYT than without it. | One hower relatively will
and land OK. Dotheral
somether by roal attitude
response. | Malised attitute po-
jones to turbulance and
dign func. In general,
INVI belose; exit per-
fers took salatively
wall, Thrust setation
rate adiciate. | | 48 | 5.72
7+ 5 dept-sec | | 0.335
0.335 | | ************************************** | circly. Although at time destred
high thrust rotation rate, Could
hald velo. time relatively sell
and clop and held hower position. | cult or predict was to
hitiate corpora elacita | Commonly nor the officers. Fair is was easier with INV from with at the titrin. With INV didn't disturb attitude nor lightly daryed, preyenter to gate, but higher thrust yetciles when | hot too difficult, could
perform somewhater with
this thrust rotation rate
Vertical Auding CK. Stee
interaction between pixels
and roll dynamics. | rotatine | | 120 | 4.2
7+ 10 fee/so | A. 1 A | 0.329
0.3% | 5.5 | N.C CP.ACTES | Att. tale very lightly demont, quite
sensitive to parts. Fairsy high work-
load for air band to control gust
dispurbancie. Some "excloration
an reading and altitude control se-
cause of attent" in on attitude. | i | tot to distibult because of her drag, burerar, constant according in period and sold control and sold control. | where furly well
but re- | that objectionable fea-
curer are goed disturb-
ances and digntly despet-
titch and roll dynamics.
live come and longitud-
ional accorner. | | | 2 | 8-72 | 0.24° | .5 | | velocities and stop and hover at
resired pulm - Pitch requires some | quictly, main' sin history
relocities and stor
shouptly without too such
difficulty. | For 'inficult, Pocited awa evicted awa evicted motion, but in green' mult belt bown position relatively well. If it containly belts. | by difficult. Only hold hold position. Raing leading had to extrol pitch cut roll fair amount. Again ITM baleal. Note interaction between pitch and voll | Objected to lightly
Dequel attitude dynamics
ITVC helps; this con-
figuration | | LIS | 3-30 respec | ~15 | 0 315
2 333 | ٠ | NOT "ELECTED | Confi manewer pretiesly, stop
ethiest too nuce infficilly ed
just from toolstide. Alequate
threst rotation rate. Attitude not
too well kage of, while from co.
""" attitude more without TOV
stace only mail attitude correc-
tions readed. | could stor and start pre-
cisely using PPA' | Aiso not difficult. Cycle bold hove poss- citic quite scauracely while con arthing etti- tide disturbacies. | Forer and too difficult.
Could maintain position
within square at all times
ittitude openitations did
require some intertion.
Leading or prolum. P
little interaction between
pitch and relig out authorize
ing major. | Feit pitch ami roll
could use a little more
EAS. IN'C helped a good
bit | | | | 5-71 | 0,332
11,335 | 5 5 | | Inoritation) answer performed
politively well. Note (ender to
disturt entrice and the "onl"
effect position, Notice, a for
ment or complice feromen to set
much one stitute change. Now
look extended by by. | present limital to any ornisely and thus hold not positive in the present of either disturbances. For icel some significant from the officing meant the in thrust systatics. | TIVE injuryed performa-
apes. Oxid hold tradi-
tion quita practicals. | Precision tower and land-
ing and too difficult,
'stread scetted affected
ability to control
Logitudically. | Chiected primarily to
lack of attibule desp-
ing. Thrust wester rate
was high, but meeded it.
This definite maset. | | tne | 5.72
* 2v 197/44 | A-F3 | 5,313
0.240 | l _a | | Fir fair not too diffice in, fould
because with degreed valenties
and stop meeting. Utility have too
but difficulty monitoring thank
to difficulty monitoring thank
name and display in council of
cartion. | Commist are difficult, jied interior to common desiral stopping tolet, but spein music by sectional dequately. | it ties thrust relation | Hower and landing art difficult. | innerest difficult to
scattor both thrust angle
reter and display during
rice atto and turn has
erver. Generally could
justions tasses fairly wall
and settleting attention
didn't present probles. | | ឆា់ | 7, - 2.0
500/21
Mpc - 1.0
184/- m ⁵ | *** | 3 A.
0 A2 | ٠.; | MA EDOLE | In all term could country prelition and release to the country and control and country | Ould that sud stop year
premisely and galouly
watched differently. So,
timed sums larger atti-
ture changes as steed
thatly by hit learnes to
assertincy agreet than
end conventence on push
"the custom?." | Ald correct for some
attitude changes and
once romentarily lost
control of particle
Xind of Auricult to
control attitude
control attitude | Call bild position very
procledy little atten-
tion to attitude, just
controlled position, ver-
lical landing to
difficulty. | Find of difficult to
convoi attitude, but
requires little control
se it is quite stable.
Position control very
say, can control quite
precisely, but sight like
a little now stick
a woltivity. | ## TARLE B-VI (Concluded) | | | P117t- | | | | | rilot C | PERCL | | | |-------|--|----------------|------------------|-----|-------------------------------------|---|---|--|---|--| | čast | Conf.
Chresetors | \$18.
H:10 | 1, | íŧ | se'erita di
Sutrol Sersitiville: | Mercering | ಧಿನೀತಿ ಕಬ್ಬುಕ | Nas-Over-2 Sput | Processon Hower,
Yestical tarding,
Scotteday Dynamics | Overall E-election | | เมร | \$51
V ₉ = 5.9
deg/10.
H ₇₀ = 1.0
Te//sec ² | 7-73 | 8.8 ¹ | 3 | en elected | velocista recurrity, stop pre-
casely and held hover position
with m. problem. | op large valcrities and
stop very abruptly with
pracision. Devalve area
small attitude concilea-
tions, but just agrored | Not difficult to control
bour position, but when
turning relictive to want
with leave to correct for
titus making this dis-
treats altifuly from
position control. | nown coatest easy, one
liver and land productly. | Attitude control during
tions can be consider
carrical, alternal,
there is a learning
parcets. Year early to
control position, lies
thrust verter same,
strity. | | ET3 | 7c = 10.0
2mg/16.
2mg = 2.0
cmd/sec ³ | >-73 | 6,2k2 | 3.5 | ಶ್ -ಶ್ವಾಗದ | | build up large velocities
and arrest then yen
shoughly and precisely,
righ control essellirity
indices when attitude
articu. | That communication in the communication control or problem, but oney may have some distriction in convolving mean and strotte on attitude, that share attention setting and tempinalized position. | Precision bower and land-
ing up problem | Thrust rotation control smalltings ensemble high, mores some attitude rotion and tends to indeed errors in portion; seemally one control localitation position outse precisely one control localitation. | | LSA | 204
2 + 5 C
2 + 2 C
2 + 2 C
2 + 2 C
2 + 2 C | | # 2.1
0.005 | ນ | | Cun't remire coursol vt. Aftity/a changes are too big frequency to follow with thome smitch, when unying to reduce brane strings entitled errors, position errors and large. Can't control stribute. | Can't perfore mich
etops, | | lier control gitte often.
Send to net cultured with
Law's art cas't scord-
nate departs well ecough.
Tractice dosse't uses to
help. | Incomission the between direction that them without pushed to camps stitutes and circutton that control single pushed to current for position errors, that's control sufficiently will to actual impuring large position discourses. | | t ELS | 800
Ser/fe
Krg - 1 U
red/ser/s | n.FS | 5 4,2
0,395 | 10 | | Effectively acconsoliable, On proceed statistics of the process statistics it can be lose control acceptance to these control acceptance to the consistent facts and the control to the control acceptance with large statistics facts or again that control the resticit enough. | officult to countly willing in an eight frequent sease sith this would expendent. | | large articles changes induced when attemption to built howering position. On a correct attitude legith monar ent statistics it will enough to consoit with any precision or even to retain control of strongs. | tri, even fus. at hoven
Extremny difficult to
compol activis and | ns a north e sea normal me sea from an anters a seas ### TABLE B-VII # PILOT COMMENTS FROM THE STUDY OF LONGITUDINAL AND LATERAL RATE-COMMAND/ATTITUDE-HOLD CONTROL # Flying Qualities Results Given in Table A-VIII | Г | | Miss. | Ι. | Π | | | Pilot C | America . | | | |------------|---|-------------|----------------|-------------|--
--|---|--|---|---| | 1300 | innereter. | dis. | ****
:30 | 77 | Selection of
Control Sectification | Managine | Gales Stops | 7478-1712-4-5791 | Procision Haver,
Vertical tanking,
Secuniary Ormanics | Overall Palcatt s | | 192 | 3C3
N ₁ • • -2
N ₂ • • -8 | 2-79 | 0.822
0.975 | | palected to gain currer
of attitude occillation
and also get desired re-
opense. | Yery difficult to perfect because of large attitude sortilations.
Mifficult to subdising prim and mily, couldn't perferm bask percenterly, of table once reactively large attitudes. | Some problem. Couldn't
stop quietly or procincly
and very difficult to
ametral attitude within
desired finite. | Couldn't perform year
cively become of dif-
ficulty in controlling
pitch and roll attitude.
Cld use the wing till
control so small extent. | Hower was engined of all
tasks, but drifted around.
Unpostionably the roll
dynamics effected pitch | Opertionable funtures -
large confillatory
notions in pitch and reli
and the lags in rayonae
to control inputs. | | 2 0 | 873
Ng + =2
Ng + =10 | b-71 | 2.140 | \. 9 | Selected to get yitob and
real ruins control | Could purfers this automore fairly
wall not a high frequency motilia-
tion in rithe and rull and analy-
lay, joe high frequency to control
and it affected president, still
comput a meshet my alughibrose
ir rull response. | todical quier stop, comes
for accepting high fre- | Could perform task feirly
well, although the migh
frequency attitude ceril-
lations were amorgang.
Used some wing tilt
control. | | Cojectionallo fastures -
Pigh fremumer escilla-
tion in pitch and roll.
Also, roll aluggiuhness. | | | | 3-16 | 5.414
5.408 | 4.5 | essected to symmeome the
lags in pitch rad rell
response | Had to 81016 building up retor | T-quick step quice dif-
ficul. Couler's step
precisely and hold posi-
tics easily Tweed to
Creshort out then escil-
late back and furth. | hula't perform test par-
tiralerly well - had
difficulty holding post-
tion Attitude lags might
mave been a problem. Buy
fewe been congrecterly
ling communit, tued wing
tilt control a fair
amount. | problem. We interaction. | Thjectionable features -
lag is attitude programe
and the fact that iriti-
ated changes when atter-
tion liverted from
Cis-lay. | | 193 | 201
Mg == b
Hg == 2 | ₩P3 | 0.944
C.904 | | | ing communical attitudes, presigned concilerable lard componention to stabilize and anticipation of one street attacks and the terminal control attacks and the same processing the same and an | | Top.tred coreliments concentration because of additionary in maintain-ing pitch and voil control. Trys little wing tilt required. | culty retablishing a pre-
cise hovee position. | Most objectionable fea-
by ye was large secunt of
lead componention re-
quired to control end
stabilize attitute. Had
considerable tendancy
towned HIO's, particu-
larly in jitch. | | İ | | LD. | 0.95A
0.57A | 5 | selected to get somirol
of attitude coellactions
and develop desiralpitch
and roll rates, | | Again found to difficult
to stop precisely and
roll not an precisely as
insired because of oscil-
latory fitch and roll
response. | demorally able to do this
alright. Ying tilt con-
trol used a fair assent. | easin a feir amount of | Objected to excillatory pitch and roll characteristics. | | | 9°3
Mgb
MgbC | | 3,340
3,340 | | Selected to get necessary
pitch and roll retee | to problem, could perform pre-
cirely. Yeny agreemble come. | As problem, could perform
precisely, no undesirable
statistics oscillations. | Not difficult, Did was bing "lik control to a mail extent. | Settler hover nor landing
was difficult. Seth year-
formed practicely, although
had a little difficulty in
hover, smyles because of
high sensitivities, Df-
firult to statilins on
given position. | Scot rese. | | | 201
242
201 | 67.4 | 1.792
1.526 | | rates desired and slau to
help emerch slight
creillatory tendency is
pitch and roll | ally generally so problem encept
some tendency to certilate even
rolling cot, although these nucli-
lations are relatively easy to
control. | A pricies in longitud-
inal; however, when mak-
ing lateral quich stop
have tendency to develo,
were underlyable settle-
tions when trying to roll
out rapidly. | No problem. Ild use wing
tilt control to some
small extert during turn, | tion) landing performed precisely. To interaction | Discrimable features -
Implement to excillate
ther making about roll
itrages, | | | EC1
Mg = -6
Mg = -NO | | 2.208 | | restores sectral. | Attitude vary stable, no attitude opciliations activable, Didn't get into large attitudes. In general souls person fairly well. | livation, demond to have
to artisipate things e
pit more and couldn't made
large repid chinges in | attitude quite stably.
Second to have some
Emurble with land to me | Nover and vertical lend-
ing no difficulty. No
interaction between area. | Objectionable features -
servage alight sluggish-
ness in pitch and Yoli,
especially roll. According to
ever, attitute very
stable. highly example. | | | | | 4.182
4.696 | 3 5 | | parcolaves bloss of east, assoc | Couldn't perfore particu-
herly wall. Amenying lag-
in estitude response. here
to pay close ettertion to
attitude | Sot toe difficult, Made
significant use of wint
tile control. | Could hower fairly well.
Landing mot difficult. For
real interaction bottoms
pitch and roll. | less in fitch and roll
response affected con-
tron. Also stitude
serves integrate rapidly
when attention is
diverted. | | | Ng6 | | 7.01A
2.240 | | to mainre farised re-
epowe to cretros inputs. | enficipation was required to stop
at lastral hower point rue to Law
transational drag. Could hold
beeding and slatteds quite sell
during air taxt wassever. | although could not
schinger and rapid atti-
tude changes without
large control impute, | position because of con-
centration required to
hold attitude, Very
little wing till control
required. | Hover and landing per-
formance very gred and
required very little work-
lead or control motions. | Must obtactnable fea-
ture was if a control
input were held. It re-
sulted in attitude
changes if attention
Afrected alsowance. My
need more training with
this control system. | | | Mg50 | 4-13 | 3.950
3.344 |) | command system so cat
sensitivity to aubieve | Meintively many and performance was
quite grout. Cruit held beating and
altitude unite well during ammuner
and control deflections relatively
small are low frequency. | o't charge attitude as
rapidly so desires with- | Wase't too difficult. You't little wing tilt won't required, but 4th require comments. tion toomse of her drag. |
Precision hover relatively
easy. Performance good and
gest disturbances bardly
noticeable. | Digutly object/crable
feature was attitude
control during quick
stope. | ### TABLE B-VII (Concluded) en de la complementation complementati | Γ | | | Γ. | <u> </u> | | |) <u> </u> | Table 1 | | | |-----------|-----------------------------|------|----------------|----------|---|--|--|--|--|--| | *) *
 | westers | ia. | 4. | ~ | fermation of
Normal Semantivities | Incorporating | Ories Stris | TILO: E-EFF | yricisia Hover,
Vertical leading,
Sacradary Dynamics | Overall Evaluation | | u-i | 901
Ng + -10
Pg + -53 | 10 | 5.539
6.500 | 1 | telectes to overcome
eluginhoses in pitch sor
roal response. | not at all difficult. Disn't get
into any large attitude changes
and disn't have any problex bold-
ing valosity and stopping at
desired point. | I-quick stop armetel mor | Co.li perfum relatively
wall. Not too difficult.
Deed wimp-til control
to nome extent. | Anner act vertical law-
ing not difficult. | ptill a little alog
gishmes in attitude
requese. Purpling
well despet Schouwed
by fact Last when
lowing at bending
indicator, basied to
drift away in attitude. | | :a> | äck
Ng + +2
Ng + +ab | 3-73 | 1.792
C.504 | | felected to get control of attitude oscillations and so get desired atti-
tud so get desired atti- | Not too difficult, Some amonging
landsmay to cociliate in pitch
and roll; Lowers, these are low
frequency. | Conselly not too diffi-
cult Attitude cacilla-
tions, diffugative fra-
quency, large enough
explishes to affect
skilly to control. | Difficult. Nest associated for high drag with sing with sing with sing with sand conclusions make difficult to convenient on continue. | Hover and vertical landing not the difficult. | Ordilatory artitude characteristics and high dress white makes it difficult to furn over spot precisely are objectionable. | | 22:0 | 200
2q + +2
14g + +27 | מא | 2.152
2.668 | , | felected to get rule of
response desired to owner
case effects of stitivie
statilization. | formehat difficult to perform be-
cause of ligher frequency ceril-
ations in pitch and roll. So-
large sough explitude or low
sough frequency to affect posi-
tion, but were a diffrection and
made stitute certrol a problem. | tifficult to statilise attitude at time fullow-
ing roll-out during lat-
eral quick styp. | Some difficulty the to
distractions in atti-
tice, high frequency
oscillations, sing tilt
control used a good bit. | Couldn't hower too pre-
cisely due to high fre-
guassy attitude co-tile-
tions. Fertions landlag-
ros profess. Case stem-
action between pitch and
rill dymadia. | Pairly continues, also
Progency carillations
in ettitude objection
able | | ten | 224
Mg - 24
Mg - 216 | *13 | 1.130
1.130 | | Sale-ted to get desirud
attitude reter | Once ally could perform management of the processity. When response in fitth and roll, locality ellight tendency towed four-level medications, but presented no problem. Good attitude diameteristics. | extroliable, prelict- | ferformed responsibly
real. Could concentrate
to position without de-
valoping large ettitude
errors, Wing till con-
tisl used a great deal. | Here are vertical law-
ing so profiles. To infer-
action between pitch and
rull. | Objectionable restures
were high freg in pitch
and roll and perhaps
arms lack of furning | | | | A-IO | 2.175
2.476 | | elected to reduce tendency to exite rether lightly demost, digit frequency occiliations to yitto and roll. | Could perfor relatively well but
encountered swe problems because
of lightly descel, righ frequency
cacillations in pitch and roll.
Med to be careful and to excite
them. | has a lot of reil metles
suring 1-full stop.
Attitude to almost con-
stant veciliation during
hask, | ever, pitch and roll were
in simmet constant cacil-
lation, Mad to be quite | piten and roll. | lightly temped, high
frequency ceciliations
in pitch and rill were
lisegreeable, Occilia-
tions affected stilling
to coutrol a good leal, | | | 30a
4q a -b
Kg = -25 | b-71 | 2,5%
2,246 | 3 | tude response needed to | | ent venicity | Andled this siript.
When to take it slow be-
cause of lift drug and
have to be careful with
bring till. Fittinds pre-
sented so distraction. | Here had vertical lact-
ing not difficult. | righ mag Ajretionsele,
but attitude character-
fatics very goot. | | | 854
Ng = -6
Ng = -26 | | 1.632 | | telerted to get desire'
rates of change in ritch
and roll. | nt partitionly difficult to
measurer. Attitude guite predict-
atile, well karped. Vary ediget ta-
derly threat are ine frequency,
wellfallogs out as problem suc-
trolated. | Secondly so probled,
although provably could
have used a little error
senciativity to rell, len-
sitivity a communica be-
reen toat speed to rell
out to lateral spice and
ye requirements for towar, | and used wing "il" own-
trol extensively. | Hrver and landing not dif-
ficult. No real inter-
active. | Only objectionals fea-
ture might be high drag
and slight tenuncy
for mad in the property
carlinations in pitch
and "121. | | 1,91= | φ. υ
γφ» | 3,78 | 2 208
4 537 | , | errit de misee | be difficulty reversing attitude
. "etro". Over stitled character-
isling, but bigs lend tends to make
it ecompat difficult to manager
reciesly. | Attitute control great.
Jenerally one perform
Tally stry precisely | Ond estitute operan-
teristics, not egals is
difficult becases of
large dract was to take
if sion assure bying
till control good bit | ection between 11tes and | Onjectionalle feature
Effect of turbulence on
Ligh drug observa-
lation, Excaliant euri-
tude characteries us | | | | , | 3 0%
: *** | | Selected as nempressias
hatmenn gerting dealand
turn of rearnone and
anciding excitation of
occiliatory symmics | temberer act to difficult, dia
one restilatory tendence in pitch
registic occuration. "Audi and
relative fighty well." | quick elone alright but
tended to get into pitch
and mula verilieticas. | ter Secur to Sevalve us. | etto | uncillating panch and
foll response unifor-
ty matte. Tested to
for also associat acti-
tures marker essily | | | Wg43
Wg99 | | 1221 | | response in pitch and
roll for mareuvering
task, | weens desired titch and roll.
Ciritol Inputs relatively smill and
the frequency | guirel rather large etti-
tule changes to get
gui Juging type myrini | attention to offer gust
gal been stol effects on
dreg this required and
singuish stop tilt con-
trol in turn | Townson galle ganl | good fully safettly cha-
jectificable features
were man wind and must
effects on position re-
sponse of airman | | | | 100 | 5.544
5.544 | i | 700 5610 | | Equick stop or low had
Not a liftle trouble
with Aquica and is
stopping at leather
point attent coulding.
Jose in preition, | Sine differently, although
lith's intenduce partic-
lian's intenduce partic-
liantly large toution
errors. Not to council
sele ving-tist mounts
with direction | hwer and landing not dis-
ficult. No interacting | Ajector to englishmess
in pitch and rook even
with large sensitivi-
ties. Everything guite
well deep | Property of the contract th #### TABLE B-VIII # PILOT COMMENTS FROM THE HEIGHT CONTROL STUDY OF THE INTERACTION BETWEEN HEIGHT VELOCITY DAMPING AND THRUST-TO-WEIGHT RATIO ### Flying Qualities Results Given in Table A-IX | | | | | | Files Commer's | | | | | | | |------|--|----------------|------|-----|---|--|---
--|---|--|--| | 211 | DAT. | Pilota
Sisa | 24. | × | Selection of | | Lick Stope | Procesies Morar, Insting Sequence | Organi Prelietica | | | | _ | | Pole | | | Control Constitution | Hadrer (A) | THE SECOND | and September Dynamics | CHARLE PRESENTE | | | | 121 | 2/8+02
2 ⁶⁸ +2 ⁶⁸ +0
303 | A-77 | 3.46 | 9 | Set beight central centricity is an attempt to
classified altitude, | Yery difficult because of diffi-
mity is constructing difficied. Al-
ditude one very, way lightly dam-
ed and required artises concentra-
tion to gain own adjust a climble
plainity. As a result, the remain-
der of the bask suffered consider-
ably. | Also difficult to per-
form because the large
catitude stress which
were difficult to central
and often resulted in
FIG-type situations in
altitude. | Even difficult became of altitude control. But attributy builting ditted within 75 for the desired Loral, altitude control activity high. | Nest objectionable fea-
ture was the last of
supplex in altitude.
Intense pilot compensa-
tion use required to
rytain control. | | | | | | 3-79
2-10 | 3.28 | 7 | Salected in an attempt
to get height under ecc.
trol.
Salected in an attempt | quite difficult, sen't perform the
teal as providedly as desired be-
stude here to pay so much atten-
tion to beight central. Altivote
varies 30 ft upward to 30 ft.
Mifficult to here under central.
Cruid unaccore legitation in | Camet to perferred pre-
cipally bestupe must pay
so such ettention to
height. Perferred plates pulst | Could parform finity wall. Iden't di , are height too much while howeving. Configuration man grad stough such that could hold hower position fairly will. The lawring sequence purfused remembly will, as least in height however, maginetic howering parties exument. Could lated its actuly. Outd had did intitude within 120 Ft in hower, help- | Definitely mends more
height damping.
Smale more height damp- | | | | | | | 3.03 | | to gain control of atti-
tude co.illations. | without too much difficulty, hos-
over, height confileted 30 ft.
lettral measurering was difficult. | stope was quite difficult
traind to here altitude
go up to 100 ft or more. | | Sag. | | | | xC2 | 9CI
Ing"Ing"
-0.1275
1/4-UL | L-73 | 2.98 | • | tivity to get desiral
altitude response for | Allipude central fairly good, avaid
dervice attention to control of
when axes during the air taxi
and quine resp measures. Raintive
ly easy and very little wing tilt
trim was required during two. | | Provision hower required very little control setting and altitude could be held failly well. The landing sequence measure required a little exteripation to stop of desired altitude, but wherein use set too difficult. | A little more altitude
desping needed to make
it a action company con-
figuration. | | | | | | 3.75 | 3,12 | 4.5 | Selected to get Swired
altitude response. | Could perfers task while holding
height rhisty well, although
height replaced attention. Build
height within may 15 ft. | Could hold height if
considerable assurt of
attention paid to it.
Probably quick step per-
formance suffered cons-
what and height tended
to slip enmy. | could home matte accurately. Didn's here may pre-
tain salidate beight. Surey position usest far-
test man beight placed, some position uses and ser-
sition to distribute ladge, no large attitude changes
accessing to correct horner position. In landing emerge, paging from 50° them to 20° ft, held diffi-
culty arresting the desect rate and building it. Held
a tensempt to overhoot desired militains. Outd-
lasd without too much diffriently, but had to do it
matterially. | Nish 2, leval is a
little ten lev, would
like to be able to take
attention off beight a
little swer. On't held
altitude such better
than 25 ft at beet. | | | | | | 3-173 | 2.57 | ٠ | Salactat to gri desired
sate of respose in
height. | Conceally could perfere this reak
fairly wall, at least longitum
mally, then assureming laterally,
servined some height confliction
which were someth difficult to
hape not. Buring the training to
these and trying to put beight ta-
der control did defort from
ability to perform the lateral
masserer. | Commily could perfere
these relatively sell;
and some trouble with
the lateral quick stey
and the coupling into
height Vauld like to
see a little more height
desping. | No problem bevering and holdier bever altitude,
Could come does not set of fairly well at 20 ft and
there came bank up to b0 ft. Held to ledd inputs
commissi, but this wear's any great problem, from
interaction between height and control of roll. | Igen't like tendency
to build up height
casillations when
actingting to macrow
latentily, but to pay
actention to height but
the damping was just
eligibily inadequate. | | | | x23 | #01
Z _{eg} = Z _{eg} =
-0 25
T/S=UL | 4-73 | 3.04 | 3 | Selected height control
sensitivity to obtain
secired elittude re-
spone for taken't and
landing. | Air taxi was relatively every as
altitude required only mcderate
amount of situation to hold morias
the unserver. Air tax: required
relatively mmll y'ton and roll
changes, however, i.a. to low deep,
stopping position had to be anti-
cipated. | Red to particular pro-
bless and altitude con-
trol was no problem as
long as beight control
was coverinated with
large attitude changes. | Occard notions and pilot effort during procision
have were very lor. But very little trouble
arresting size rate during the landing separate
and the alteropeant alian back to by ft. | A little more neight
demping might be de-
sirelle but this level
is quite adequate. | | | | 12k | 301
2 ₀₀ -2 ₀₀ =
+0 h
T/W+UL | A-73 | 3.50 | 2 | Selected to get desired
response to cellective
inputs for changing
Altitude, | Air tari was relatively easy be-
cause very little attention was
required to control altitude, | Gift step masuver
guite may | Precision hover required virtually no impute on
the mittre a control to maintain the militude
within a 5 > "out of the nominal hovering militude | Very good height con-
trol, has adequate
imming. | | | | ж25 | 9C1
Zw Zw
-0 OS
7/4+1 O2 | \$-11\$ | 3 05 | 7 | Selectes is an atterd
to control attitude
ceciliations. | Drained coupling breezes beight
and both longitudismi and latural
axes when situaciting to measure.
Seemed to have districtly holding
height during the longitudismi
immourary. | During the longitudinal
quick stop just about
touches down because of
the low thrust and lack
of desming. Neight was
consistently gring into
relatively large oscilla-
tions, 20 ft or se. | This was't too had, Could stabilize height fully wall not has howeling position water control quite wall. Paring labeling sequence about toward down during descent to 70 ft. But he very extend to the country of the country of the country was a support of the country co | Objectionable feature
is the distinct lack
or height damping and
low threat. | | | | H26 | 301
Zwg-Zwg-
-0 125
T/4-1.00 | A-73 | 3,0 | 7 | | Had adequate thrust for takeoff
but had sifficulty stopping at
desired asservering altitude of
40 ft. Had some problems control.
ling altitude during the air taxi
and turn-over-a-spot management. | Control of militude re-
gared considerable
yilot attention is quick
stops. | Bermeing
performance fairly good, but required
some attention to control altitude. But a great
chall of difficulty in arresting size rate during
the descent to 20 ft. Thrust was clearly quite
inadequate and the configuration lacked beight
desping. | Aircraft needs both
increased thrust and
increased height
damping. | | | | 1027 | 3.1
7 ₈₆ =0
7 ₆₆ =0,25
7/4-1 02 | A-73 | 3.0 | 6 | | Climbout following takeoff was
very alow due to lock of threat,
find some difficulty stopping and
maintailing desired monuvering
clittics at 50 ft. Air fact pro-
quired considerable pilot concen-
tration on allitude control has
that difficult to stay within
15 ft of the desired altitude. | Perticularly difficult
due to the upsets in
altitude. During the
lateral guick stop briss
ly touched down. | Proclaim howe not too difficult acture the de-
sized altitude over stellings, but orbalizing
this altitude was sendent of a problem and re-
quired considerable effort. Arresting oths rate
for the landing secumes unserver required that
only seell sink rates could be developed. | There were two aqually objectionable features: (1) the lack of thrust for arresting sisk rates and (2) the featurist and (2) the featurist action altitude despite, considerable effort required to arrid developing high sink rates. | | | | κω | 200
200
200
200
200
200
200
200
200
200 | A-73 | 3.6 | 6 | | Configuation very sluggish during litroff, ocule tot establish very night rate of climb; however, had not difficulty at all establishing desirts altitude, luring the air fast had so problem controllishing | little were and did co-
tice a limitation on
thrust is arresting
sink rate. | horneting performance use very good and was not
bothwest by last of other structs or altitude
secting, hurse leading secures had to be con-
ply to to descript the sight scale rate, with
how too such difficulty arresting stat rate as
long as care was used, clicked out again to bo ft
was very slow and sluggith. | Nest objectionable fea-
tures were (1) lack of
threet vises was parti-
cularly amoying during
elimb out and (2) amoy
acce is erresting else
rate, although this pro
blum was not 'no sewere
blum was not 'no sewere | | | ## TABLE B-VIII (Continued) | Γ | | miot- | | П | <u> </u> | | ಸುಇ ೧ | comments | | |-------|---|--------------|------|-----|--|---|---|---|--| | Case | teremeters | tte.
Mote | ·3, | PR | Selection of
Cortrol Sensitivities | Hasuvering | Quick Stops | Precision Mover, Leading Sequence
and Secondary Dysmics | Overell Evaluation | | 129 | 8C1
T ₁₀ =0.
T ₁₀ =0.33
T/N+1.00 | 3-73 | 3.0 | | | Mid to pay fifrly close ettention
to height control when measure-
ing. Mid to lead inputs a fair
as at its order to arrest descent
and had to be eareful shout build-
ing up descent rates that were
not too large. Couldn't take
attention off height control. Al-
thous I could perform the measurers "irly wall, it affected
their previatos somewhat. Also,
an't thin height half any bet-
ter than about july it to the
average, mire somewhat less. | Required considerable extension to control altitude. | nowe was not too difficult to perform and could
stabilise attitude fairly wall. But difficulty
going done to 20 ft and smallling them, tended
to oscillate up and down. Also, but to be very
searchl with collective species. Significant
manufactures are supported to the before remaining search 20 ft position.
Could land asfuly, incover. | bould prefer to see a
little agre 2, and also
more thrust. | | PZIO | BC1
Zwg · Zwg ·
-0.25
1/8+1.02 | A-73 | 3.0 | 1 | | Adequate thrust for teheoff, Bed
so problem stopping at desired
howering altitude. All constant
altitude unconvers were relative-
ly asy to purform. Ind not have
to essentrate much on altitude
and hald altitude relatively son-
stent, | So problems. | Precision howe performance was very good and
there was very little control activity required.
Hereat was eligibily deficient when attempting to
arrest sist rate so had to unitcipate the demined
altitude withe descending by applying thrust
with anticipation. | Only slightly objection
able feature use the
limitation on thrust
which was articed only
stem arresting sink
rates. | | ×211 | 901
Zwg*Zwg*
-0.4
1/4+1.02 | A-79 | 30 | 5 | | Clins out fallowing takeoff was very slow as there was landequate threat to devalop any significant rate of clims. However, damping seemed quite good so had not trooble stopping at desired manuring alliude. Altitude control was quite easy during all of the constant altitude manevers, including air text and turn-ownsespot. | So problem controlling altitude. | Nowe performence good, little effort required.
Idea's seem to have much trouble errerting sink
reds during the landing present. Bover, and
diffraulty cileding not my to bo ft; there was
just innequate thrust evaluable. Littling was not
particularly difficult on long or sink reto wene't
allowed to get too high. | Riggest objections were
(3) lack of imust for
developing mutable
climb rates for taking
off and climbing to de-
sired altitudes and
(2) indeparts throat
for erresting high
rates of sink. | | | | 3-75 | 3.0 | • | | No difficulty, quite easy to
hower and measurer and to stop
precisely both vertically and
laterally. Could hold height
quite accurately while doing this
little attention required. | One perfors without dif-
ficulty and one go to
relatively large stti-
tudes without baring al-
titude affected signifi-
cantly. | tude without difficulty. In landing manager on
once down to 20 ft without too much difficulty.
Must perform this took relatively slowly because | Only objectionable fea-
ture is that it is very
diffricult to climb to
any altitude. Response
is much too slow and
have some diffriculty
arresting sisk rates,
but this is not a signi-
ficant purden. | | | | 3-10 | 2.95 | 5 | Selected to get desired
response to exatrol in-
puts in height. | Could measurer quite wall. Some coupling between height ear roll inpute, but generally begint very stalle, very wall desped. Only complaint with height control is lack of throat. It takes a long time to the out. However, can descond and arrest descent very sampuly wood precisely. | to problem, but during
the lateral quick stop
did couple in come
beight motion. | So problem. Leading
sequence not difficult to per-
form, but amoyed by inskility to climb out so
quickly so desired. Nuch too sluggism in climsing. | Only objectionable fea-
ture is lack of thrust
which restricts rate of
climb, but well desped
and can arrest descents
precisely. | | H212 | #C1
Zwg*Zwg*
+0.005
T/W-1.05 | 3-10 | 3 07 | 6.5 | Selected primarily in
attempt to control
beight oscillations. | Ould perform the longitudinal
massiver fairly accurately and
hold hower within 310 ft. Lost
precision in lateral mneaver be-
cause of concentration required on
holding height, perfects interac-
tion between height control and
ability to control laterally. | Again longitudisel was not too bad. Interally didn't built up too many large errors but still feel that height control is much too poorly despect to control assessed | the massivering portions of the tasks. Could
descend to about 20 ft and hover there with rela-
tively small altitude ceciliations and them go | Definitely needs more
height damping to re-
duce attention required
on height control. | | HZ13 | ac1
2w_*2w_*
-0.05
7/W-1.05 | 3-13 | 3.01 | 6 | Salected to get desired
rate of change of heigh
and to halp get the
height cecillations
under control. | Air taxi not difficult. Nolding height within 10 ft while manuscript long-tudinally, but when exacurating long-tudinally to the manuscript laterally tended to devalop larger beight oscillations as much as \$20 ft or so. Think height control did affect shilly to perform mneuvering tank to some extent. Difficult to take like height, Height was in almost continuous cecillation. | Inegitudinal quick stope
could be perfured bet-
ter than lateral cess,
however, is both intro-
duced some upsets in
height. These were
especially procounced
for lateral quick stop
when altitude diverged
by about 30 ft. Unfor-
tunately, height was in
pretty much constant
occupants of quick stops. | Hower not too difficult. Could keep the height oscillations to within 55 ft. Red sufficient control power to perform leading sequence, but needed some damping. Red to lead height control to arrest club and descent retes. Could perform vertical landing early. Reight dynamics did affect ability to control during the lateral quick stop. Tendency to left height diverge and concentrate on the lateral manuver. | Objectionable feature was the last of height damping, control power assumed adequate. | | MZ114 | BC1
************************************ | A-73 | 3.0 | 3 | | Thrust adequate for takeoff and didn't have too much trouble stoping at the desired altitude following climb out. Height control required a little but or steemion while performing the constant rilitude measurer, but both thrust and damping seemed to be adequate. | No problem with this test. | Precision hover performance was quite good and required very little stiention. During the landing sequence manuvers seemed to have adequate thrust for arresting sink rate and for climbing back to the Wo-ft altitude hover. | | | | | 8-73 | 3.0 | 4.5 | | Air taxi could be performed reason
ably well, but had to pay signifi-
cant amount of situation to alti-
tude. Tended to drift may and had
to correct and less courtol correc-
tions to stabilise on altitude. | Could be performed fair-
ly well. Oxuld go to
large ettitude changes
without abrupt changes
in altitude. However,
again altitude tended to
creep off and seeded
stabilization. | of attention to altitude. Rnd some difficulty sta-
bilizing on mer altitudes when descending and in
coming both up to NO ft. Nnd to lead control input
to stabilize height, Also bad to approach the land | tude could be changed
easily enough. Hed to | ### TABLE B-VIII (Continued) | | (- | P1344. | | | | | Pilot Co | Track a | | |---------------|---|--------------|------|-----|--|---|--|--|---| | t es + | interesters | 51A.
4010 | ī. | 17 | Celection of
Coverol Semistivities | Manyvering | dulek Steps | Precision Herer, Leading Sequence
and Secundary Dymerica | Oversil Evaluation | | ಲು | \$23
2 ₀₀ -2 ₀₀ *
-0.225
2/4-3 05 | ±X. | 2.62 | 3 | Selected to get desired
beigni response. | So problem performing manager
longitudinally; laterally might
have emitted a little bright mo-
tion, but apprently beight in
sufficiently wall demped that did
not get into any significant
height position changes. | Could perfore both longi-
tudied and lateral quies
stope fairly wall without
upersized inlight. Relight
is relatively easy to
control, stable. | No problem holding herer provides or altitude. No
problem perference leading expense, Could vice
showsty with cury a single securit of consecution.
Height position wall dauged No year interaction
between different and | No real edjectionable
features, Dufficient
despite, so apparent
lack of control power. | | æs | 203
24 ₄ -0.
24 ₄ -0.25
5/8-2.05 | L-73 | 3.0 | 6 | | Because of inadequate thrust, taksoff was relatively singuish, but had no difficulty substitution that had not sufficient to the substitution thrust constant allitties measurering performance was fairly good, lash of allitude despite was not a particular proclam. Howeving two required only a small assent of wing till tria. | these allitude somewhat
but the only deficiency
is a lask of thrist for
arresting these altitude
disturnances. | Precision bown performent was escallent and re-
quired way little after. Empion was flating good
during the inciting sequence; the only problem was
arrecting high pask potes quietly, this required
surface to develop only minimal sint rates. | Abort only objectionable
feature seemed to be
lack of thrust for
arresting sizh rates and
for developing essired
clists rates. Jesuires
extensive attention to
avoid getting late pro-
bless shring high sizh
petce. | | M216 | 373
Z _{eg} ==0.25
Z _{eg} =0.
T/8+2,-35 | A-73 | 3.0 | 5 | | Trust nore than alepante for
takeofr, Registed a little actici-
pation to stop at desired mone-
vering clittule. During air tari
and turn-own-asyst moderate
pilot attention was required to
control kildude, bus performeres
was not degraded | Some tendency to upest
altitude, but had more
than adequate thrust to
arrest the motion. | Adequate thrust and demping for precision bower.
During landing segments had adequate thrust to
arrest size rate and did not have to place any
limitation on that rate for fear of not being sale
to arrest it. | unly molerately objectionable feature was
that it could use a
little more height
damping. | | HZ17 | 201
244 2.25
244 0.25
2/4-1.05 | A-73 | 30 | • | | Not such difficulty in performing
constant altitude mnouvers. Alti-
tude repaired small amount of
attention but seemed to have ade-
easts desping and thrust for smia-
taining constant altitude. | S) altitude ecotrol pro-
bless. | Precision hover performance was very good and required very little pilot communication. There we adequate turnet for citizing but stopping at the sired altitude required some pilot anticipation. | At this seeping level
thrust seepel adequate,
but a little more
beight deaping would be
desirable | | | | b-73 | 30 | 2.5 | | Could perfore air tari with pre-
cision and hold altitude quite
accurately. Altitude way state,
may to correct and generally did
not stray much from desired alti-
tude. So need to lead injute, | Could perfure this task
setily and precisely and
could mile fairly large
attitude cranges without
affecting beight soo
much. | Child hower very prociety, very little need to
motifier altivate. In the landing manners could
descrete quite preclasity to 20 ft and come math up.
The vertical response was positively good, file's
seem to lace could power and the samping was
now than adequate. No difficulty arresting size
rate, so great oeed to lead altitude injute, Could
land quite precisely. | Bo real objectionable
features to this case. | | | | 5-16 | 3.06 | 25 | Selected to get leetrel
response in height, | Manuverin, no problem, Could per-
form the test precisely and had no
real problem with holding height
string either the longitudies! or
leteral showners. | Cruid perform these pre-
cisely. Did see same de-
resses is altitude when
making very abrupt later
al stops with large roll
acties, but
easily
corrected. | Precision hower no protlem. In landing sequence
could change altitude very shruptly and stop quite
precisely with no noticeable overshoot. Could also
climb fairly rapidly. | Might like to see a
little mare control
power, but not mucu,
So real objectionable
features. | | F218 | 3.1
Zwa Zwa *
-0 40
7/V-1.05 | A-73 | 3.0 | 3.5 | | During takeoff had adequate turnet
for eliab out, Bo difficulty stop-
sics at maxemering altitude of
40 fp. During constant altitude
manaverse altitude repulsed very
little effort to motirol and al-
situde outrol was good height
dynamics seemed wall damped and to
have a rate-type response. | So probles with test. | Rowering performance good and require' very little affort, Could not develop reak high rate of climber or rate of describ the full initiation as interest and/or high camping. A little were thrust would have been described to develop higher rates of climb and to insure accepting stak rate during descent. | Only elightly objection-
able feature was per-
haps being a little
eluggies in response
in altitude due to the
lack of control power. | | HC19 | PC1
Zw = Zw =
= 0 05
T/W=1.15 | £-X0 | 3.24 | 6 | Selected to rely in sta-
bilising beight oscilla-
tions. | Could messever longitudinally with
out too much trouble, when mean,
vertice laterally introduced a full
ly large longitur-hal displacement
arrow will be concentrating a
pilot occessestion to stabilize,
may in almost constant occillation,
up and down, as much as 20 ft. | Inaptivalizat quick stops
performed fairly well
while bolding height
within 25 to 210 ft.
isteral pick stops only
infricult because of the
lact of neight desping. | tions small while havering ecturately. Could per-
form leading sequence fairly accurately. Could
second relatively guidely to 20 ft act stabilize
and rise again to bo ft, then lead gently. Height | Meight demaics chiec-
tionable, need more
demping. | | 1573 0 | 3C1
Zwg~Zwg~
-C 125
T/V-1 10 | A-73 | | 2.5 | | hal nore than adequate thrist for
takeoff and had little difficulty
repping at Geniral altitude fol-
lowing climb out. During the con-
stant altitude memourse had to
devote only a small amount of
extention to the control of alti-
tude. | | Presidion bower required very little concentration
or control activity. During landing sequence un-
surer beln of difficulty presiding with rete, how-
ever, small arount of anticipation required to sto
at desired altitude. | figuration is quite
satisfactory. | | | | b-73 | 30 | à.5 | | is emeral could perfore atreat
relativity wall. Into have re-
situation to attitude, however,
and make fairly routest corre-
tions. Had to take concentration
way from horizontal, position a
good dask to emitter attitude.
Had to lead attitude control cou-
mant, would like to see a little
nore attitude Gamping. Had adequat
centrol power. | could perform this smoon was visitous too such a sifficulty. As in's totle a lace of control power and went to relatively large attitudes without affecting altitude too much, rethered occasionally by the fact test attitude would send to change unnoticed. | quired attention, Landing sequence performed fairl | bould like to see a
little more attitude in a
damping, although it is
not all that bud, Think
control power is adm-
quate. | ### TABLE B-VIII (Continued) | <u> </u> | .,, | r-1ct. | П | Г | Pliot Comments | | | | | | |----------|---|--------------|------|-----|---|--|--|--|---|--| | ••• | Tara eters | fin.
hose | 24. | n | "election of
"re"r>. Secil"ivities | Nuneuversing | Quita Stop o | Procision Hores, Landing Sequence
and Secondary Symmics | Overall Praints | | | 1220 | 201
Tag "Tag "
10 125
1/4-1,10 | 1-12 | 2.62 | , | selected to get desired
height control response. | Byt too much difficulty with long
tudinal manovering. In lateral
manovers noticed own coupling
between allitude and roll. He to
be limit of correct manovering
laterally because could build up
some fairly substantial larget
variations if not untion elecally. | latural roll outs to make
sure that height wasn't
disturbed, but to watch | to problem, could held beight fairly well, ?2 to 3 ft. Could descend to 20 ft and other residity. Some control Composettion required, but could stabilize relatively well at desired notice and then climb to 50 ft without too much difficulty. | Slight lock of beight
desping, out sound to
be plenty of threet. | | | RC21 | 5C3
Z _{ag} -r0.
Z _{ag} -r0.25
Z/r-1.20 | 479 | 3.0 | 4.5 | | ster "has adopate thrust for
takeoff, inc good rate of class
but had to anticipte aderied ma-
surering attitude a little further
at tall and howering turn measurer essent) performance was fathy
good but had to direct moments
attention to control of altitude. | Tended to uport altitude
but had adequate therest
energia to servent size
rates. | Procision howe performance was very good and re-
quired very little effort or concentration. So pro-
tion serventing soft rates on there was more tun-
adequals threat and over, tidal't have been such diffi-
culty obeying at desired allitude. | Only chiestionable fon-
ture was a slight #C-
ficiency in altitude
damping, but thrust
seamed more than
adequate. | | | | | 2-73 | 30 | 5 | | Altitude tended to unadar when
mnonvering and when performing
quick stops, had to menture alti-
tude a Good bit in order to hold
altitude presizaly. Chall perform
the task fairly real. | Performance fairly good,
but altitude messed
attention and tender to
evershoot periodically
when walley corrections. | Could have precisely, had to monitor altitude again, but altitude control aut too sifficult. The landing sequence was performed fairly well, sugar difficulty arresting attitude, some tendancy to overshoot desired altitude. | Beeds more altitude
darging. | | | | | 3-M3 | 2.52 | 3 3 | Selected to get desired
height response. | No proties with air taxi. Not to
watch beight while measurering
laterally, but could control this
to within about 13 ft. | height when making later-
al quick stops and make | Horer so problem. In leading deplence octal change
altitude Tairly shrutly and stcs utthact too such
difficulty. Mad to compunest for overences a
little but didn't require too much affort. | Whyte would like to
see a little more damp-
ing, but the case is
relatively easy to
control. | | | rC23 | #C1
Z _{rg} == 0.25
Z _{rg} =< | A-73 | 3.0 | | | Oud thrust for taken's and deval-
oped good rate of oliab, stopping
at desired altitude was not ton
meds of a problem. Constant-alti-
tude monavars required normats
attention to altitude control but
performance was fairly good, | These minewers upset
clittle the most and re-
quired the most attention | Precision hower performance was very good and re-
quired very little effort, had no difficulty as all
arresting sink rates or stopping at desired alti-
tudes. | Only annoying feature
esseet to be atlantion
required to control
altitude string con-
stant altitude mayon-
yore. | | | | | 2-10 | 2.76 | 3.5 | Salacted to get freired
beight reupchas | Po profiles with longitudinal man-
mores. Could perfure teak pre-
riedly set held were sittlede
relatively soll, "2 to 3 ft, wat
to pay comment more attention to
beight during lateral assessment. | Could perform fairly well, introduced eligitally languar beight errors during lateral than longitudinal manuvers, but height didn't change repilly and it was rescoolly many to correct. | Novem no problem. Could descend relatively restaly and arrest descent excurstal, and quickly. And to man the man to man the man to make the man to the fall, stay to do. | Hight life to see a
little some height
samping, but this is
not a bad case. | | | XC21 | 5C1
Zwg"Zwg"
10.24
2/4+1 10 | A-Pa | 3.c | 2.5 | | Mure than adequate thrust for
takeoff ead had so difficulty at
all stopping as identer all titude-
polioring citno out. All titude con-
trol Auring all of the constant
all titude management was relatively
easy and required very little
offort | no probleme. | Prevision hower performance was very good and re-
quired very little effort. Bith Unut and height
maning seemed adequate, buring the lanting enqueri-
manamers had no difficulty arresting sink rate or-
etopping at desired
altitude. | Sond configuration | | | | | 3-73 | 3.0 | | | Als tast sould be performed with
fife precision, although it would be
have one alded by a little more
slittede adering. Altivo's realest
to crosp may periodically Alti-
tivate control required soce less.
Newwork, most lampement is mitted
was that it readed to drift off
them attention not paid to it al-
most economics. | relatively well Could
go to felrly large atti-
tude angles without
having elitible change
absorbly, but altitude | Not difficult, but had to pay attention to altitude Could change allitude relativity decisity and stop without too mace difficulty. Peedet to last dispute a little but not a great deal, leading does receive just consensus, but no complete shoot allitude satisfy to manarum vertically, but was bothered by lack of allitude stability. Don't time altitude salid any better than about 35 ft or some | Ponda a little name
altittde damping. | | | C2** | IC1
Zwa*zwa*
-0 k0
1/k-1.10 | A-72 | 3.0 | 2.5 | | Air tail masserer and turn-over-s-
spot relatively seay to perform
sad had relatively most perform-
sace. Control of allticule re-
quired way little streation.
Neight ensend seequately damped
and to have adequate threat for
control | Relatively easy to per-
/orm. | Previous some require very little effect and
could control all ears quite well. Assess thrust
for climing and changing allithois and arresting
size rate. There may have been very small assumt of
anticipation required to stop aircraft at deal of
altitude. | Sivi coaligurativa | | | 725 | RC6
(************************************ | .n | 30 | 10 | Set reach of sensitive if see is en attempt to obtain tolerableop one trol over attitude. | lad on extremely difficult time
controlling ablitude, it requires
actross anticipation to arrest
vertical action and at times got
into virious Fifer that unmalay
resolted in hitting the growth.
Found it went to impressible to
perfore the teast because when
artestice system of pre-stroil,
allitude control lost allitude
control through either pre-live-
ation or FIO teadentles. | | | It is mandetery that
this configuration have
more reight desping.
Control would be lost
during some position of
the required teak, | | ## TABLE B-VIII (Concluded) | | . , , , | 41104. | | | | Mics comments | | | | | | | |------|---|--------------|------|-------------|--|--|--|--|--|--|--|--| | *634 | negui | 11z
**010 | 3, | e | election of
Compail Secutivities | Minous Aring | gusek stope | Procision Norw, Landing Sequence
and Secondary Dramics | Oversil Evaluation | | | | | K(25 | ತಿರಸಿ
ಸ್ಟ್ರೋಸ್ಟ್ರಿ-0.
ಸ/ಚಿ-ಬಿಸ | B-79 | 3 02 | 8 | | Yery difficult to perform because of stustion meads to practice by Agat. Occident perform may manage the precisely because of concern short possible permission at the permission of permiss | Yary difficult to per-
form the task with any
practicol because of
yeary year height control. | This mea't gains as had, sould haver Tairly wall hat do see difficulty satullities height. The ir.ding compane was ment to toposellat to perform conduct teathline on either 20 or hard allitudes. The vertical lasting also difficult, get close to the ground and then just dropped it in to prevent oscillating sees more. | Definitely mode more damping in bright; this is completely unacceptable. | | | | | | | 3-16 | 3.06 | e | | tery difficult to perform. One't
do it with any precision. Must
concentrate on altitude seeries,
then this degrades managem per-
formance. Altitude control no bet-
ter than 240 ft. | Thi similator emergency
during the lateral quick
stop because of the dif-
ficulty in controlling
altitude. Cha't perform
any task with precision. | coulse't sower precisely or hold sowering continue while landing. Conserved mindly with beight control and reballising it to come extent. The landing sequence was a lit and mise operation. Just had to lat howevering precision deteriorate and wary continued by the lattice down to 20 ft. Med to lead occurral involve a great deal. | hifficult to control
height — certainly the
east objectionable fat-
ture. Extremly diffi-
oult to how beight any-
where is bounds. Heeds
height damping. | | | | | xcx | 206
2 ₀₆ 22 ₀₆ °
-0 125
2/4-02 | A-73 | 2.60 | , | Set height control sem-
sitivity for both alti-
tude response and alti-
tude stability. | Controlling altituts requires und-
erate pilot componention, that is,
required some articipation to step
at desired altitude. Air tari una-
sever required moderate concentra-
tion on altitude control. | Required moderate con-
cemtration to perform \$1 | Precision between required mederate pilot concentration both to offset man wise affects on air-carry position and to control altitude. Senses of the divised attention it was gowernly half only within JIO ft of the desired altitude. | Nest objectionable fea-
ture was the slightly
low demping in altitude.
Yeal more desping would
be required to make
this a satisfactory
configuration. | | | | | | | t-73 | 3.28 | à. 5 | Selected for desired
control response in
height. | Air tasi not too difficult, Coule
perform it resembly well with
some practice while holding alti-
tude within about 25 ft. Ned to
pay a good deal of attention to
height, more than desired. | Could perform lateral
and longitudinal quick
stope with remnomals
precision but had to
fairly constantly keep
attention on height. | Precision between two difficult. Could have
precisely, but constinently altitude would drift
off. The landing espence was't too difficult
tould like to see some noty-beight desking, how-
ever, Difficult to stabilise and hold mixtude
precisely. Approached landing carticulty, but per-
formed 1 of. | Chjectionable feature
was primarily the Jack
of height damping.
Would like to see a
little more. | | | | | | | 3-1 9 | 2.79 | | Height control sens'tiv-
ity selected to Lontrol
height oscillations. | "sacrally could measure relative-
ly wall, but think that lock of
dauging in beight affected shiftly
1. perform measure, Could bold
height within about 10 ft, but
all those was in constant motion.
Couldn't really stabilize on any
given altitude particularly well. | No real difference in
remarks compared to
missivering. | Could hover fairly well white holding altitude without too much effort, but howering position was degraded ansemant. Het to make fairly continuous inputs to beight to keep stabilised and to keep within 10° ft. In landing sequence could decrease altitude to about 20° ft fairly wall, but every now and them could have to make an elevyt input to control howering position. | Would like to see a
little more damping in
beight, although this
jan't critical. | | | | | HEZ? | RCh
Zwa "Zwa"
-0.25
T/V+VI | A-73 | 3.73 | 3 |
Selected beight control sensitivity for desired altitude response during takeoff and landing. | Air taxi wasn't too difficult, accept that relatively large atti-
vade changes ours required to
it utiate and sustain valority.
On it hold beading and altitude
fourly accurately with only a
mode ate control effort. | Nost objectionable fea-
ture of quick stope was
the large attitudes re-
quired to initiate the
translational motion. | the assoyed semestat by gust disturbance during
precision hower is both position and a little is
attitude. This was a mindy unpleasent character-
istic. Altitude control required very little
activity and assessed to be fairly well dasped. | Ommersily grad config-
uration. | | | | | XC28 | BC*
Zwg*Zwg*
+O. J
T/#+VL | A-78 | 3 82 | 3 | Selected height control sensitivity to get de-
sired response for smkin
altitude changes. | Air taxi was relatively easy to
perform because very little atten-
tion was regulard to control alti-
tude. Purchassive apport required
pilot effort only because of the
mean wind effects on position such
that relatively large changes in
wing till trim were required. | | Precision hover was very easy from the standpoint
of controlling altitude, most attention was re-
quired to offest drag effect on the sirplase.
Height control was very good. | would rate it 2 0, but
because of sman wind
effects on the sir-
craft, will rate the
overall configuration
3.0. | | | | #### TABLE B-IX # PILOT COMMENTS FROM THE STUDIES OF HEIGHT CONTROL SYSTEM LAGS AND DELAYS AND INCREMENTAL THRUST THROUGH STORED ENERGY ### Flying Qualities Results Given in Table A-X | | louf. | min | | Τ | | | Pilot (| versets | | |------|---|-------|------|-------------|--|---|--|--|---| | *** | Preveter. | ł | 260 | ľ | rection of
Control femiliarities | Manuvering | Quick Stope | Procision Sever, Inteling Sequence
and Secondary Dynamics | Overall Evaluation | | K.I | BC1
Zeg * Zeg *
-0 125
T/#-1.05
Ty-0.3
&y-0. | A-72 | 3.0 | ; | | Theoff performance cuite good, out had to entiripate desired howering saltitude of 00 ft. Derin air taxi altitude required considerable attention, and altitude deviated more than desired. | Altitude perference was
fairly good dering turn
manever, but during
quick strp there was see
niderable variation in
altitude. | Secretary performance was Tally good, but had to
devote own statution to control of altitude. Dur-
ing landing commons macrow had no previous error
tag cain view but required some statemine to the
bilize altitude. This applied to the landing, too. | Nort objectionable fun-
type seemed to be a con-
bination of either light
damping in militade or
purhape log in the
thrust response. | | | | 2-75 | 3.0 | 3.9 | | Altitude required considerable
attention and companent on deriva-
beth the mannevering and quick
stop persion of the teak, Ough
and disregard altitude own for a
moment, Mat to load impute and
make fairly continual control in-
pute. | Overieralle plist effer
required. Performance
not too good. | Could hover fairly precisely, but had to sube rela-
tively nontineous altitude control isputs to hover
concretaly. Could perform leading sequence but had
to be very careful shout descending toe registly as
republosing estres altitude, hem applied as
republosing estra distinct, hem applied to
exempting, has to meticipate desired altitude.
Cauldn't land emortally tensors of thrust lags. | Allitude monda mare
damping on lawer thrist
lags. | | | | 1-XQ | 3.01 | , | Started to get desired
eight response. | Se difficulty performing air sack which bolding beings within fairly close telegrames, any phort 59 ft length seemed to be relatively result, fairly will despot and direct change chrotily shan performing the lateral measurers. | to problem holding beight during the langitudinal quick stop; during the lateral quick stop; during the pose some attitude angle which were large second to introduce helight errors and cames some sifficulty in helight control, but really nothing actrons. | beight very steedy. In landing sequence could
second of Intelly repil review and stop quite pre-
cisely. So conciliations evident. Could lead our e-
fully, but no vertice about modifieting in height
rear the ground. | Cos't find maything tor
objectionable with
beight, it seems to be
palatively many to con-
trol. This the motion
halped in controlling
altitude. | | 15.2 | \$01
200°200°
-0.175
2/4-1.05
70°
20°
20°
20°
20°
20°
20°
20°
2 | A-73 | 3,0 | 2.5 | | Very good takeoff performance,
has no difficulty stopping at and
balding blot altitude during con-
stant altitude measurers. In fact
very few southal inputs were re-
called while performing mir many
quiet rispe and tyre-over-a-snot
measurers. | | Thrust response comment fairly good when arrowing that note during the leading sequence massers and oxygaing at the 2Drt allithus. Thrust control we also adopte for leading. | Oros altitude emtrol. | | r) | 301
2 _{ya} -2 _{ya} -
-0 175
1/4-1.05
1 _y -0.3
1 _y -0 | A-71 | 30 | , | | Clish out performance was good and
had so problems stopping at in-
sized allitude. Very little affort
required to held allitude walls
perfecting the six basi, turn-own
a-spet, and quick stop manurers. | | Nowering performance was very good and required
very little effort to control clittles. Here was
either a might limitation or ealsy in threat when
attending to correct sick rate, but this was no
particular problem. | Only objectionable fun-
ture was the slight
limit or salay in
thrust when arrowing
sink race. | | | | 3-73 | 3.0 | 3 | | Air taxi and quick step measurers
could be performed while holding
altitude relatively constant.
Altitude not difficult to maintain
furing these measurers. Testency
to charge somewhat but act too
repidly, easily compensated. | | Rows could be performed quite precisely while
bolding skillands within very close tolerance of
skeut 17 m, the looking sequence also was not dif-
ficult to perform. Some makil tendency to overscore
them descending and according but says to compac-
tate. | Would probably like to
see a little more dam-
ing and a little less
ldg, but in general is
not a but beight-con-
trol configuration. | | 154 | 2/4"Zy"
-0.175
1/4:1 05
Ty-0.3
4,-0 1 | A-73 | 3.0 | | | climb out was settlefactory follow-
ing takeoff and had no difficulty
stopping at moneyweing elittude
of \$0 ft. Altitude souted requir-
ed very little attention while
performing air taxi, saick stops
and turn-over-a-spot managers. | | Attitude control during precision howe was way
good. During landing sepames eld southe a little
lag in throat response in trying to arrest side
rate, no had to anticipate cattern distince. Again,
during clim out throat was assemble but noticed a
slight lag in throat response while perfurning the
final landing. | A slightly objection-
able feature seemed to
be a small lag in
thrust when attempting
to land or agreet sink
rate. | | ĸ | RC3
Zwg-Zwg-
-0.175
T/W-1.05
Tw-0 6
4,40 | 4.73 | 3.0 | b. 5 | | had adequate thrust for subscott
and clinb out to desired elittude.
Only mmll amount of affort re-
plied to stabilise at desired al-
titude. During constant altitude
amounters had to give some atten-
tion to controlling clittude as
there was seen tendency to cecil-
late short desired minervering al-
situde of No. Tt. | Required a little acre
altitude control but this
was not a particular pro-
blem. | huring precision hower noticed teadency to cent-
lete and heat it saltitude allightly, but in general
performance was finity good, buring leading en-
quence noticed a lag is thrust when witnessing to
arrest size rate, but this was only a noterate
probler. Thrust response was slightly slow during
leading | Nost objectionable fea-
ture seamed to be a
slight lag or delay in
thrust response when
attempting to arrest
sink rate. | | | | 1-17 | 3.0 | 3.5 | | Ownerally could perform our tast
provisely and bold allitime fair-
provisely. Some mail tendency
for allitimes to drift off bit this
was relatively easily corrected.
That he pay some attention to alli-
tude but really it didn't tend to
get every. | precision and without
abrupt
rianges is alti-
tude. Had to smalter al-
titude. | Precision hover stalls be performed easily and alts
hade presented on general problem. Outside descent and
accord without two more differently. End have to
lead impute, however, has to be concerned about
versation, appositally when creating altitume,
Vertical leading sould be performed cuite precise-
ly, but had to be careful in arresting sink rate. | Some thrust lag effects
switch; Might like to
see a little more
damping, but this is
not a particularly
bed case. | | RIG. | 30.1
7wg=0,
2wg=0 35
7/4+1 05
7g=0.6
d_0 | 1-73 | 3.0 | • | | coupling between height and rell
motion but didn't have to make
particularly large or rapid incute | altitude fairly well even
while performing the lat-
erel maick etop, but a- | howe so difficulty, Could hold hold longituding,
and vartical position gains wall. Laving sequence
we a little touchy, had to be eartful not to built
by descent reten which were too large because of a
teadency to develop your conflictions in height,
had to write about inputs though. | Objectionable funture
was slight oscillatory
tendency in beight, al-
though this wasn't a
problem. | | .a.? | #C1
2wg=-0:25
Zwg=-0:25
T/N=1:05
~y=0:6
1y=0 | A-75° | 3.0 | 2.5 | | control mas required. | ver, control was rale- | Virtually to altitude operate was used during the precision born. There was edequate thrust and sampling during the landing sequence macouver and any thrust lag was not noticeable. | Ovel altitude control. | | FS. | FC1 Zwa=0 Zwa=0.35 T/V=1.00 AT/A=0. TA=0 | 1. KU | 2.67 | | Selected to get desired
helpA response. | Ret difficult. Could uncouver accurately while holding height yellar
tirely will. Height tended to in-
crease during the lateral unporter,
however. | pre-issly during inversi | form not difficult, Value pafer mee Chrus for
accepting my rate of descent. Cal't climb either,
to Liberation. | Moviemente lace of themset. | # TABLE B-IX (Concluded) | ſ_ | | *11c1- | | | | Mint wreats | | | | | | |------------------|---|----------------|------|-----|--|---|--|---|---|--|--| | | tereset u | /12.
*o!e | 24. | 17 | Selection of
Petrol Secutivities | Scarrering | Srick stops | Frecision Hover, landing Sequence
and Secundary Dynamics | send sunt | | | | REC | 871
2 ₄₀ -0.
2 ₄₀ 0.35
7/4-1.00
47/4-0.13
7 ₃ -0.20 | *** | 30 | • | | Saight control required stice las, so throw changes is slittled but tended to drift oft. Not to lead rollective inputs oil world building my large detect rates. | leveloped height errors
of 25 ft. | Nower art too lifficult. Could hold altitude pre-
cisely. Nowestely difficult to arrest my lescent
at 20 ft and stabilize altitude there, lack of
available tirust. Could lavd safely, wherear. | eets over facialled
thrist-to-weight ratio
and possibly more
daying. | | | | KE) | 3C3
Z ₄₀ +0,
Z ₄₀ +0,35
T/N-1 C2
31/N-0,13
T ₁ C 2 | LP3 | 3.0 | 3 | | Neight control required some atten-
tion but only low-frequency corpus
tions seeded. Disn't have to lead
impute much. | | Could hower recleaty with only small restations in milities, behalively seep to serfore landing expense. Could build by syrseciable altitude ratios, neutral them, and arrest beight changes quickly. | | | | | | _ | A-16 | : 65 | | feloried to get desired
race of height change. | No yearles of ther laterally or
longitudially. Only encourse and
stop precisely. So difficulty hald
lag altitude guite precises. | By problem even in lat-
erel quiex etope, Could
stop almostly and told
altitude quite precisely | down no problem. Centrally could about labiling sequence fairly well. A little concernal with spillity to stop rate of septent. At this coverant littled a little, so had to second with some care. Think thrust is adequate. | Objectionable features -
A slight objection to
lack of threst test was
evident when trying to
stop fairly high
lescent rates. | | | | X. | 973
Z ₂₁ -9.
Z ₂₁ -0.25
1/4-1.02
31/4-0.26
T ₃ -0.10 | ►73 | 3.0 | 3.5 | | Altitude required etwention when manuscrains. Havener, panerally ould convoid to fairly well. Some tendency to creep off and increase actuated but 15 hayeand relatively about, Could build up fairly enginificant rates and arrest them without too much difficulty. | required some attaition, but could control altitude fairly well. | Nower no problem, Could perfore this pre-inely
and hold altitude quite scoutstaly, the landing
sequence also ret loo difficult. Could as down
to 20 ft at a relatively partirate and server
altitude without too much difficulty. Out here
some problems stabilizing it but nothing too
algorithms. | Pairly good case. | | | | | | 9.10 | 2,07 | , | Selected to get desired exaptese in beight end desired rate of change of altitude for a war-fortable enorgol input | Senerally so problems extensifically seems providely and hold satisface securately. | Performed Quick stone
previously and had no
problem bolding beight. | lover was not difficult. Some Look of thrust whose armsting desment, concerned with building up too large a descend rate, however, seemed to be able to some as reptly as desired. Seemed to have adequate thrust available. | Objectionable feature was the slight lack of trust were descending. A little economical with inability to arrest seals rates, lat with care can keep them will under control. | | | | ж ^т) | 901
Z _{wa} =0.
Z _{wa} =-0.35
T/n=1.00
AT/N=0.25
T _A =0.05 | > 17 | 3.0 | 3 5 | | During measurer but to satch siti-
ture reasonably losely, funded is,
increase slightly, the fidnit measurer to
to be difficult to control and it
was reaccombly ovedicianly. Durit
recall having to lend figure too
greatly. | No problem with altitude control. | COLD Power Tractably and hold distrude closecy. Lancing segance was not illficult to perform COLD Power Precisely are descend to the Point slitteds with no difficulty, blant seem to have any real problems arresting descent rates | Coultr't let descent
rates build up too
large but for normal
descent could arrest
sittude precipaly, | | | | | | Ł.K | 2.67 | 3, | Sainted to get Jeeirud
altitude Feerchae, | Air sex, not difficult height
control didn't affect shillify to
control long-todient or lateral
motion while memoratic, Not a
little liftfully bulling airi-
tude. Would drift we and down
should fift we and down
should for you | Could step pricely and
provincely, at least
longitudeshall, without
having altitude chargo
too much. Old lose some
attitude auriga the late
with order stop, May
have lacked a little
thrust to recover alti-
tide. | Name not difficult, and to be a little careful
about rate of esecut. Couldn't learned rapidly
and also away tily. And to allow new relatively
couldy. | chiectionable feature -
Flight lace of thrust
puring descent and
when trying to recover
feight during lateral
quice store. | | | # TABLE B-X (Continued) | | | mlot. | | | | | nin o | -jete į | | * | |-----|---|--------------|-------|----------|--|--|--|---|--|---| | ٠., |
(tal.
Jerūšini | Sia.
Mode | 20. | 118 | Pelection of
Control Sensitivities | Pagerneting | Quick Stops | Tura-Oren-e-Spot | Procision Hower,
Yestical Lasting,
Secondary Dynamics | Overall Evaluation | | bé | 905
25-075
26-075
75-07
45-073 | 1-13 | 0.270 | 3.5 | Salested to get desired
heading rate of change. | to problem, Malatively easy to hold
bending. Had to make most engree-
tive bending inputs when measured-
ing interally but heading was wall
damped. Differt develop any bending
contillations. | No difficulty in performing these tests, Some
corrective impute re-
quired won measuring
interally, but could
make a good shary later-
al quick stoy. | solatively easy to set
up and hold a heading
rate and stop procledly
at new hosding. Fing
tilt control use used a
small actors. | Hower not difficult. No interestion between head-
ing dynamics and control of other name. | No objectionable fea-
tures, this is a good
seas. Handing is well
damped, no writent
lags. | | v | क्षतं
१,-0.5
१ _{,-} 0.5
१ _{,-} 0.3
१ _{,-} 0. | A-73 | 0.273 | 4.5 | Treemos of mute and | Performance fairly good, but had
some difficulty controlling bood-
ing during lateral measurers due
to gust offeste and directional
coupling to lateral speed. | Only difficulty was associated with beating control during changes in lateral velocity. | Heating was we'ry responsive to pasks but we quired artisipation to stop at desired heating has to lage in directional control. Used a mail amount of wing tilt control. | Hower performance good but
did require attention on
direction. | host objectionable features were related to
eligibly low desping
in direction, sust
effects on direction
and lag is response
to directional con-
trol imputs. | | | | 1-73 | 0.181 | | Selected to control
beading oscillations,
especially when trying
to held beading practica-
lay Arring measurer or
over. | Ability to manner was affected
by difficulty in bolding beating.
Ameling tended to occiliate 25 day
almost constactly. Heading was
never really stable, interni ma-
nerum especially difficult. | Could perform these
tooks, but heading re-
quired a fair essent of
attention. Difficult to
central height because
of attention required
for heading. | Could turn ever the spet
fairly well and stop (
fairly precisely, rich's
seen to get into head-
ing sesiliations, wing
silt control west to
some entent, | had some difficulty horning because of heading control. Vertical leading could be performed alright meding did affect ability to control in other ages. | Chjectionable features
the lack of desping in
heading and/or the
lage. | | , | , | }-IĞ | 3,259 | b,5 | Salected to get beeding
rate respense and also
to control bealing
coesilations. | In lateral chooses had a tendeny
to develop beading servers and
oscillations, Oscillations general
ly were low lard set not too dif-
ficult to control, but assoying. | In lateral quick stops
had to watch heading
rainly slowedly and make
corrections which equid
develop into oscillation. | If performed clowly
could turn and stop pre-
cisely, but if heading
rates built up and tries
to arrest heading
abungity, tended to
develop significant
heading oscillations.
Difficult to damp. | Hower and landing no pre-
blem. Think besting
arfected shillify to con-
trol roll and lateral
motion. | Objectionable features
Due't like the oscilla-
ton' obsected frice in
heading. The log is
apparently present. | | 25 | BCI
Seco.5
Secote
Foro.3
Apro.3 | 2-73 | 0.280 | 5.3 | Selected to get desired
two rate for bending
control. | Found it difficult to chabiliss
bending when measureing lateral-
ity, built by fairly significant
oscillations in handing (shout
70 to 15 to 50 that arrorad
ability to perform lateral measure; | Only internal quies stop
was difficult. Ability
to perform quids stop,
affected by the heading
scarred difficulty. | Could develop and hold
burn rate fairly wall,
but has difficulty stop-
ping on desired heading
and rabilising it. Ming
tilt control seed to
your small extent. | No problem with hover, the to be light on the castrols to keep heeding controlled the problem occultations relatively small; insuing outsul definition; articles shilly to perfer lateral masses, ward, | Heading control objectionship, the large are
simply too large.
Tend to develop cessil-
lations. | | 2 % | j | 9-105
2 | 0.226 | و. | Selected to control heading cacillations. | Developed heading oscillations when unincreasing both laterally and longitudinally. Scambast cifficult to south bessen; Fault to stay many, vary oscillatory. | Repectally during lateral quick stops beading me oscillatory and required significant assumt of attention. | EAR to be careful not
to silfs by desired
bealing. Yery may to
do with this case. | hover and vertical land-
ing not difficult. Head-
lag entrol affected
ability to control pitch,
roll and to some extent
height. Not attention
meay from these piler
axes. | Objectionable features
lack of damping and
lag in bealing control, | | | , | A.FS | 0.235 | 1 | fet for desired respects
while making heading
cranges. | relatively eary except lateral ma-
over required attention to main-
tain heading. Performance relative-
ity good however. | Required a little more estemation on heading. | Performance fairly good
although explicit's main-
tain a emprison turn
rate very escurately. Re
quired a little matter-
pation to stop at de-
sired bending and some
difficulty stabilising
it. | Precision hover and land-
ing performance good and .
required very little
effort. | Only objectionable fea-
ture was that direc-
tional damping was
slightly low, | | Ď | 201.
25-0.5
25-0.6
25-0.6 | 3-73
3-73 | 0.232 | 6 | Solution to get desired
burn rate for an accept-
able penal layer and
also in an attempt to
hold control booking
contillations. | imformacé effected by lact of
swylet and lass is bending. Food
of to develop Philip souther ben-
let estillations during measure."
Dat was now processed wills
measuring laterally. | Ability to perform this selected by the lack of damping is heading. | Could turn Fairly wall and control turn rate without man difficulty, but it was tough to hold a heading; Wing tilk uned a little. | unile bowming was occil-
lating in heading. Could shower fairly vail, but as
times hower position was '
affected by attention ba-
ing diverted to heading.
The to watch beaching while
landing. Lab. of damning
and lang in heading affect-
ed additity to control real
pitch and height. | Heats some more damping
as heading or reduction
is lags, shows in-
possible to damp out
heating oscillations;
stility to control'
other axes is affected. | | 200 | #.1
R0.5
R _{0.} -0.5
R _{0.} -0.6
R ₀ -0.1 | Lf3 | 0.848 | 6 | Selected to get Turn
rate desired for a given
pedal input. | Could perfore the longitudical macroe relatively will, but herest success we may dirticult; But to be very constituted to work existing heading estillations. Could not control heading too tightly. Two certaints tendency to build up \$70°s in heading. | Difficult to perform. Med to be countful about besiding control. | Not ten difficult, but
it was cough to stop wa
a given eagle precisely.
Tendency to desiliate
to fulry large honding
angles. | could perfore how not
heating fairly well, but
heating did then to wader
was effacts, how or
despite, the loss is heat-
ing affect shilty to con-
trol pitch and sepecially
coll. | The PIO tendency in heeding due to large and clayer are objectional; All eases with large large are community, and the property of the large carrier and the large certification are opinion; that the property that they provide the property that they must be regarded as undestrible. | | 011 | 27
2, w1.0
2, w1.0
2, w1.1
2, w1.1 | 3-72 | 0.30% | 3 | Selected to get the de-
sired turn rate, | Couls perfore this measure quite
well, beading control so problem.
Exited some very slight ceelila-
tions is beading, but not diffi-
cult to control. | Noticed some slight
oscillatory tendency in
heading, very, very
slight, easily correct-
able. | Could turn precisely,
select turn rate desired
without too such trouble
ving tilt control used
a little to correct the
affects of mean wind. | No problems, Some slight
tendency to ostillate best
and forth in besting but,
dign't affect shilly to
hover or land precisely. | No real objectionable
features, Slight tea-
dency for heading to
cocillate, but met
difficult to control, | # TABLE B-X (Continued) | | T | | Т | Τ | | | nia c | orposit a | | | |------|---|------------|------------|-----|---
--|---|---|---|--| | 5410 | Cat. | Mior. | 14 | 77 | felection of | | diet Stops | Turn-Over-a-Spot | Procision Herer,
Vertical leading, | Crerell Estation | | - | | Mode | _ | _ | Control Squaltivities | PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTIES AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION AND ADDRESS OF THE PARTITION ADDRESS OF THE PARTITION ADDRESS OF THE P | | Tal-over-Listor | Secontary Dynamics , | | | 215 | 303
*2,~1.0
\$2,*02
\$3-0,
4,-0,2 | 3.73 | 0.294 | 2 | Selected to get desired
turn rate response to
pedal injuin. | Could perform both internal and
longitudinal memorum persons,
while paring very little stiention
to bending control. Heating quite
stable, no tendency towarie cesti-
lations. | So difficulty. | Could have quite pre-
cisely, etch alengely
end remin there with-
out coefflation. Head-
ing control no problem. | Could hover quite accu-
rately, held position wall
without having to vorry
about heading. | No objectionals for-
tures. All ares well
(Auted. Confortable
aircraft to fly. | | 21.3 | #C1
#p~-1.0
#eg_*CU
#gr0.3
#gr0. | A-PP | 0.341 | 3 | Set to get degined head-
ing Juspesse. | Daring air turi kenting response
was relativity way and quat
efforts and compiling to lateral
valueity were rather scalant. | Required some attention
to souterd seeding due
to lateral valueity
scaping during the lat-
eral quick stop massu-
vers. | Nery to mintain a constant turn rate and to
step at desired heating
May here noticed a vary
elight lag is direction
at response have because
of the relatively slow
control is direction
this was of no particu-
lar problem. | Nover and landing 00 pro-
blom. | Good directional con-
tral communication. | | | | 2-70 | 0.413 | ٠ | Salected to get desired
tare returesposes to
poor laputs. | Could perform test fairly vell.
// / / / / / / / / / / / / / / / / / / | Could perform the quick
stops rather well but at
times had some problems
with the heading costi-
lations. | Could perform task quit
well. Could turn at de-
sired rate, step pre-
cisely, and bold back-
ing without too much
trouble. Hemnised over
the spot fairly well. | Could hever quite secu-
retaly and last without
too much trouble. From
interaction between the
heading control require-
ments and ability to com-
trol other exec. | slight contilation that
write up in moding
periodically we stro-
bably the ally objec-
tionable feature in
heating. | | | | \$-1G | 0.275 | 3.3 | Selected to get desired
turn relec. | So problem either interally or
longitudinally. Interally did dev-
elcy some small bending metics but
re-real escillations and easily
controlled. | No problem longitudically, interestly had to vetch besting a little but it was quite easy, to stabilize, | No real problem sta-
bilizing beading after
the summ. | Precision hover and ver-
tical imming not diffi-
cult. Healing control did
not affect other area. | No significant objectionship features. Heating a little oscillatury. | | M. | 80%
8 junt 0
6 july
8 july 0.3
4 july 1 | | 0.3% | | Set for decired heading
response to polel impute | Belativily efforthess but had to
give a little attention to hand-
ing control forcing lateral sacco-
vers, Oust efforts on direction
ways minimal. | Teak posed an particular
problems. | Turn rate control quite
good and could stop at
desired heading with re
latively little actici-
pation, Leed relatively
little wing tilt con-
trol. | Performance was good and
required very little
affort. | Middy annoying charac-
teristics here were
signt gust efforts
and control lags in
healing, however, only
slightly noticeable and
little attention re-
quired. | | | | ⊾n | 0.305
* | b.5 | Selected to get desired
rate of heading change, | They now difficult longitudinally;
laterally had some difficulty
halding bending and developed
bending conditations that at time
affected ability central lateral
displacement. | Interal quick stops re-
quired attention in
heeding; fool perfar-
more degraded by lags
in landing control. | Cruid beld and develop
a turn rate fairly well
but tended to develop
some oscillations after
attempting to arrest
the besting. Wing tilt
control was used a
little. | Hover and landing Fre-
sented no grobless. Head-
ing dynasics did affect
shilly to control lat-
erally somethat. | Disctionable feature
was the lag is beading,
although it could have
leas worse, | | | | 3-103 | 0.270 | 3.5 | Saloctas to got accimal
tury rates, | Soliced sor slight besiding certifications for both latent and long-
like the latent property in the property could solicely the while paying early adverted stitution. | Menting oscillations were evident for both lateral and longitudinal paick rtops, but it was not particularly diffierly soliday to perform the teat was degraded slightly due to attention the defended of | Not too difficult,
some
tendency to slife by de-
sired beeking and then
develop occiliations
when stimpting to re-
cover. | Precision hover and verti-
cal landam not difficult.
Smeding dynactics did
affect shility to control
pitch and roll to some
small criest. | Voild like more desping
or less lag in heading. | | 515 | BC1
Rp=1.0
Sc_WL
Tg=0.6
dg=0. | ₩13 | 0.271 | | Ser, to get deciral head-
ing response. | hal to give some attention to
directional source), especially
during lateral measure one to
some gart effects and the to
directional coupling to interal
valuoity. | During the intered trans-
lation had to give ross
extention to booking con-
tral. | Quite se good se desired | Hower performance was good
only direction required a
small amoust of attention. | hat objectionable fea-
ture seemed to be a
slight deficiency in
Amping in direction
traded to suppress gust
disturbance and min-
nic disturbance due
to lateral measureing
valority. | | | | £73 | 0.237 | 5. | Selected to control some
what metable besides
when attempting to bold
it closely, used removed
value so that wouldn's
excite action. | Could be performed, but heading afforded providing, this was especially from the measurering laterally. Couldn't keep from maching bearing certifations which were about 210 day. | Two much attention acc-
essary for leading con-
trol to hosp it from
estillating, | Could perform task al-
right. Turn was perform-
al relatively alroly but
quite assurately. Ving
tilt control was used. | Could hover fairly wall,
didn't have too made dif-
ficulty healing bedding in
hover and landing. Heading
dynamics affected ability
to control during literal
massavers and quick steps- | Objectionable features
were lack of heating
damping and/or the lags
is heading. | | , | | 1-H2 | 0.238 | , | Salected to get turn
15th and also to belp
in extralling bredler
contillations. | luring lateral manerous has to
which handing but didn't seem to
get into any large escia-tions,
home amorphone since hat, or pay
more attention to it than desired. | Not to writh bending in
lateral guist step. For-
sible to get into fairly
rubriantial oscillations
in bending. | Approveded turns very exceptally, Didn't went to arrelop large occillations which could largem if rapid turn attempted. | Precision hover And verti-
eal landing ne problem,
Needing dynamics diffected
ability to control some-
what. | the lag is heating con-
trol which led to heat-
ing occiliations during
the ture and lateral
miscovers was objec-
tionable. | | ni.é | 201
Rywlio
Yagelli
Tg-0.6
ag-0.1 | A-73 | 0,336 | ٠ | Sciented to statilize bedding control. | Red some trouble during lateral
concerner building heading and at
times dissert bed a FIG-type situa-
lion in evaluating beading, band-
ing was distribute to some actions
by gards and by the suppling with
lateral valentity, like some diffic-
oulty communiting and building bead-
ing without commercing the
desired heading. | Ind heading seatrel pro-
tions similar to these
in oir taxi. | Mesn's too difficult,
but it required some
anticipation to stop at
desired handing. Very
little wing tilt excirol
hand. | Prver wasn't toe bad, al-
though had to prvride come
concentration on banding
to hold within 25 dag. | Riggest problem was examinating and hold-
ing at desired head-
ing, Second to be some
lag in the raproma-
tal at time almost
cet into a PlO-type
situation. | # TABLE B-X (Continued) | | | min. | Г Т | | | | , Film O | ement e | *************************************** | ~ | |------|--|--------------|-------|-----|--|---|---|---|--|--| | çese | Services
Services | șis.
Pois | 34, | ~ | uniectica of
Tooters Sensitivius | Hosenvering | Quice Mays | Tem-Over-a-Sprt | Procision Hover,
Yestical Landing,
Seconiary Dynamics | Overell Evaluation | | ಶಚಿತ | 803
\$p=-3.0
\$0g=0%
\$p=0.6
4p=0.3 | 273 | 0.30 | 5.5 | folicial to get desired
burn rate recouse. | had once difficulty stabilising
besting. Heading would tend to
certifate through fately large
amples writtle, 210 to 15 ang,
writing lateral manacres, had to
keep field layris as small as
possible. | interal quick stope did
present remerist of a
problem, had so setch
housing ally any keep
correcting it as it tend-
es to oscillate some. | Could turn ever the syst
fulrix accurately and
step fulriy well. Kind at
difficult to hold turn
rule; rathe while twel to
billd up and then taper-
off. | Precision hower and verti-
eal landing presented no
yrohim, large lag la
heading affected ability
to outrol laterally. | The oscillatory characteristic in meeting and the lag in response the objectionable. | | | | g. NZ | 0.264 | à.5 | Soluted to got desired
turn retor. | As real problem, Could perform
both laterally and longitudinally
without difficulty, and to match
bending a little during the lat-
eral maneware and correct for
some bending motion. | Again so protion. Pad to
correct for him ling
changes during lateral
amounted but are diffi-
oult. | could turn provincy and
stop feirly policity.
Freey now and then days
aloped a small cortila-
tion but not difficult. | Provision hover and verti-
onl leading so problem.
Reading control disk't
affect ability to control
other ages. | Colectionable features and accellatory ten-
dency in booking. | | 217 | 200
2,0.5
2 _{0,-} -0.10
5,0.
2,0. | 2.73 | 0.235 | 6 | believed to set desired
turn rate fir a given
pedal turn . | laterally rea into difficulties, mids't have enough control pore; to sourcessful the affects of E, when measurements intensity; that some led to excitations, that have yearful to keep tending as those to serve as possible becomes if a yew error developed than was so way to get bessing back curing answerse. | Name straction during the
largest quick stope and,
once got larke some moder-
ate corillations during
the latural quick stop. | so difficult. At a low
terd rate one stop pro-
sisaly and hold socially
pulatively well. Mag
till occupal used to a
small artest. | Ro problem with heading
during hower or Landing-
the last of courts from
in heading coupled with
the lose denging affected
ability to control roll
and lateral position. | The lack of directional
control power and damp-
ing is the primary
objectionable feature, | | aiê | 363
K ₂ -0,5
K ₂₂ -0,23
T ₆ y0,
dy-0, | \$-73 · | 0,238 | | palacted to get desired
turn rate response, | Bot stiffs alt. Latacily scended
more difficult as could introduce
come polytroly small behild;
occiditions. Buthered a little
who measuring leverally by
the
lact of switcel power and damping,
but in general cycle perfors these
tasks without such difficulty. | Could perform the internal
quisk etcy fairly precise
by and mice a large bank
angle change to etcy
abrustly, but but to
match heading somewhat, | Bu difficulty except had to avoid building up turn rates which were to large, otherwise walk overshoot desired head. Inc. | Nove oni vertical landing not difficult, some
rince interaction between
besuing tymnics and roll
control, lateral position
control. | dicted power is just marginal, would like to see little area damples, although the case is not too difficult. | | 219 | 973
X ₂ -0,3
X ₂ -0,16
X ₃ -0,
4 ₃ -0, | 3.73 | 0.235 | 3.5 | Salucted to get desired
turn rate. | leally no great difficulty in performing air taxis has oscillatory curvatury stice in mediag during lateral seasowers, but easily controlled. | ties in besting when try- | Co praily not difficult,
but must evoid building
up high turn rates so as
to not overshoot heading
and go into oscillations | hower and vertical limi-
ing no problem. Lack of
desping in beading had
name effection ability
to control laterally. | bould like to see a. little more desping in heading, but the case is . too had, | | toro | 803
Rp=1.0
R _p =0.10
R _p =0.10
d _p =0. | ⊷n | 0.708 | 3 | art for desired directions responses. | Performance fairly good and so-
vices to deficiencies in control
power or carring. | ictions a little lack of
directional course power
when necessaring lateral-
ly while trying to bold
heading. | Could not turn at a very
high rate due to finde-
rate directional control
fower. Fractically alon-
ed to a strp stem 50 cm
to the vinc. Nat to am
ticinate desired heating
terrace of intelligent
crated power. | Recision hover perfor-
more was good and there
were no deficiencies, | ites chiectionshie fea-
ings was the insuffic-
cient timerticual con-
trol power, Could per-
form the test but it
repaired come thin-
tional compensation
and workload. | | | , | 1.71 | 0.306 | 5.5 | Selected to get Leeired
furn rate response. | has out of control power diving
lateral meconwes, counta't const-
erect the effect of X _p . In lateral
meconwer to left the rose rotated
to the last and couldn't bring it
hack! | to problem longitudically
but devaloped some beni-
ing occillations during
the lateral guids step be
sense of deficiency in
control power. | could perfer this rela-
tively will, but could
not true particularly
fust. Not to be curaful
to rurs alouly to avoid
overshooting desired
beafits. | In probles with hower and
landing. The lank of head-
ing control power did
effect ability to control
laterally during lateral
crick stop and during the
lateral unconvers. | The lack of directional
custral power was objectionable, resilt seed
some more to perform
the tanks adoptately. | | | | 3.13 | 0.273 | 7 | fulncted to get desired
turn rates; | Longitudiant manusure no problem. In lateral presurance tended to you out of you occircl presure the large term rates built up. Affector addity to rold heading. | imerally not difficult,
some tendency to develop
larger than devirable
bending angles when man-
suraring laterally. | idificult to control coming. Could arrest turn rate, but when at 90 day to the mean wind it was difficult to sta- billse healtry, fred rare control power. | Pose tasks not difficult lack of directional con-
trol power definitely affected shillty to con-
trol pitch and roll. | Use of control com-
is beeding was very
expertionable. | | 201 | 273
24-12.3
264-0.23
25-0.
45-0. | A-73 | 0.236 | 3 | ist for Assired direc-
lional response. | Directional desping was good and
and in modern perforating the air
text in women or builting leading
current; but seasoner. | (utth they makernes to
problem. | Had good rate control,
however, when No dag to
the mean vial motive? a
lack of control power as
raintively allow from rate
like's decreado perfur-
mace and only slightly
noticeable. | Ever performance good
and directional control
quite adequate. | only slightly objectionable facture was a solitemble production in a sirectional control power when 90 deg to the sean wind. | | | | 3-75 | o,30c | 3.5 | Selected to get two
relse that were decir-
ble. | Ouls perform visions difficulty. But to be accombate constitute a world developing large bensing rates, as low as directional topics which were solvente, and to be the lack of autority but and to about her and the | crite well, both lateral and longitudinal, | not difficult, but had to
swell developing form
rates which were too
large. If turn too rapid
would overshoot and it
would be difficult to
get handing under overral
again. With small turn
rates no problem. | Bover and landing no pro-
blem, so posteroble inter-
netice of bealing with
roll and pitch. | Aust a slight lack of
your recircl yours
Nexth life to see a
little more in cour
of large beading rates
or so mangency. | | | | 1-10 | 0.25 | 2.5 | Selected to get desired
two retes. | re problem with lateral or longle
judical reservers. He apparent
absence of control power, | trail perform these man-
arrows fairly procisely.
We less of curtral processions, the to by ron-
cramed to a Hallast an-
lact with becking, but
is was well dragast. | No difficulty, ecula
turn rapidly, stop year
cledy, Again to era-
ters of a lack of con-
trul power even then
90 dag to the mean wind, | No difficulty with hower
and landing. In interes-
tion of heading with
other axes. | Bo real objectionable
features, Good obsess-
teristics in booking. | # TABLE B-X (Concluded) | | | 4.06 | | Γ | | ÷ ** . | nie c | ument. | ** | · . | |--------------|---|--------------|-------|-----|--|---|---|--|---|--| | ٠ | | Sin.
Pois | 4, | 5* | Celection of
Control Sensitivities | Photoreriog | Qu'un trops | Pages Over-an-Spot | Yestision Hover,
Yestisal Landing,
Secondary Dynamics . | Overall Evaluation | | 3 t 2 | | 'A-PA | | 3 | Set for desiral response
to point imputs. | Occi control dring air taxi; cally
alight attaction required to con-
trol heating during the lateral
maceure, food damping and also
quate control power about all are | test intered quick stop
required some attention. | Der rate could be half
quite accurately and '
there was no problem in
stopping at desired head-
ing. Adequate direction-
al control power to com-
trol mean visal affects. | Nover per Grance was
very good and required
very little attention. | moticed no definitely
in oceanol power and
sould perform the test
quice wall. | | | | 3-73 | 0,306 | 2 | selected for desired
besides response for
turns; | No problem laterally or longitudinally, Could perfore these tests precisely and tiefs there to concentrate much for heading changes. Resting quite stable, not affected much et all dering lateral management, Planty of control power. | Same type of commete så
for manuvering, | to problem, could turn penciolary and rapidly and still step accordate, by wing tilt contract used to a small extent. | Bot at all difficult to
hower are land, could
perfer those takes pre-
cisely not they seem?
at all affected by the
healing dynamics. | No rejectionale fea-
tures, Code ease, | | | , | LX | 0.254 | 2.5 | fairted to get desired
turn rate response, | a lack of control power, | No problem. Could per-
form the lateral guick
stop precisely, small
exempesatory imputs in
bearing. | Also to problem, e.m.,
turn residly, step pre-
cisely. | Procision hower and ver-
timal lawding not diffi-
cult. Bo interaction
among the dynamics. | No objectionshie fem-
sures, Good case. | #### APPENDIX C #### SUMMARY OF CONTROL-POWER-USAGE DATA Control-power-usage data, which generally consist of the control power levels exceeded five percent of the time, are listed in this Appendix. For some of the studies concerned with control-power limits, the percent times that the control power command exceeded these limits are also presented. Data are shown in this Appendix only for selected test cases, i.e., the exceedance computations were not performed on all the cases considered in the UARL program. The control-power-usage data tables also generally parallel the tables in Appendices A and B. Control-moment data from the longitudinal and lateral control studies are summarized in Tables C-I through C-VI as follows: C-I, turbulence effects; C-II, control lags and delays; C-III, control-moment limits; C-IV, iracraxis motion coupling; C-V, independent thrust-vector control; and C-VI, rate-command/attitude-hold control. Thrust-usage data from the height control study are presented in Table C-VII. Results from the studies of the interactive effects of height velocity damping and
thrust-to-weight ratio and thrust lags and delays are shown there. Control-moment-usage data from the directional control studies are contained in the last table, C-VIII. Preceding page blank TABLE C-I # PITCH. TOLL AND YAW CONTROL-MOMENT LEVELS EXCEEDED 5 FERCENT OF THE TIME FROM THE STUDY OF TURBULENCE INTENSITY ### Vertical and Directional Parameters Listed in Table A-I See End of Table for Explanation of Notes | Case ¹ | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Turbu- | | | | | Fixed | Base | | | | l¥: | rving i | 9 1 56 | | |-------------------|------|------------------|-----------------|--|---------------------------------|-------------------|-----------------|----------|------|-----------------|------|-----------------|------|-----------------|-----------------|-----------|---------------|-------------| | Busic | Der | bility
ivativ | es ² | | lence, | Sub- | | Pilot | | | | Pilot | ~ | - | | Pilet | | | | Conf. | Mus | Χu | Md | Мθ | σ _{ug} σ _{vg} | task ³ | Me ₅ | Lc5 | Sin. | Nc ₅ | Mc5 | L _{c5} | Sim! | Ne ₅ | M ₀₅ | Lc5 | City. | ¥c5 | | | | | | | | хм | 0.33 | | 0.38 | | 0.35 | | 0.45 | | 0.35 | | 0.39 | | | Tl | | | | | | YM. | | 0.22 | 0.38 | | | 0.40 | 0.58 | | | 0.27 | 0.43 | <u> </u> | | - | 0.33 | -0.05 | -2.7 | -4.2 | 3.4 | xqs | 0.34 | <u> </u> | 0.39 | | 0.39 | <u> </u> | 0.50 | | 0.30 | | 0.42 | <u></u> | | BC1 | | | | | | YQS | | 0.44 | 0.54 | | | 0.58 | 0.70 | | | 0.32 | 0.50 | | | | | | | | | שב | 0.28 | 0.30 | 0.45 | 0.07 | 0.33 | 0.48 | 0.64 | 0.05 | 0.28 | 0.28 | 0.42 | 0.08 | | | ļ | | | | | HOV | 0.26 | 0.22 | 0.43 | | 0.31 | 0.35 | 0.57 | | 0.25 | 0.23 | 0.47 | | | | | | | 1 | | MX. | | | | | 0.40 | | 0.52 | | | <u></u> . | | | | T2 | | | | | | YM | | | | | | c.39 | 0.57 | | | | | | | - | 0.33 | -0.05 | -1.7 | -4.2 | 5.8 | xqs | | | | | 0.48 | | 0.58 | | | | | | | BCl | | | | | | уфз | | | | | | 0.62 | 0.78 | | | Γ | | | | | | | | | | าช | | | | | 0.37 | 0,44 | 0.63 | 0.15 | | | | | | | | | | ! | | ноч | | | | | ð.79 | 0.30 | 1.01 | | | | | | | | | | | | | ХМ | 0.48 | | 0.78 | | C.41 | | 0.70 | | 0.43 | | 0.63 | | | T3 | | | | | | ¥74 | | 0.46 | 0.66 | | | 0.57 | 0.80 | | | 0.34 | 0.61 | | | - | 0.33 | 0.05 | -1.7 | -4.2 | 8,2 | XQS | 0,44 | | 0.62 | | 0.56 | | 0.87 | | 0.44 | | 0.60 | | | BCl | | | | | | YQS | | 0.73 | 0.85 | | | 0.48 | 0.81 | | | 0.38 | 0.65 | | | | | | | | | TU | 0.37 | 0.43 | 2.69 | 0.08 | 0.46 | 0.51 | 0.71 | 0.09 | 0.37 | 0.25 | 0.52 | 0.07 | | | | | | | | HOV | 0.43 | 0.30 | 0.60 | | 1.38 | 0.38 | 1.56 | | 0.38 | 0.30 | 0.60 | | | | | | | | | XM | 0.40 | | 0.47 | | 0.39 | | 0.50 | | 0.29 | | 0.43 | | | T4 | | | | | | YM | | 0.39 | 0.57 | | | 0.39 | 0.58 | | | 0.29 | 0.45 | | | - | 6.33 | -0.20 | -1.7 | -4.2 | 3,4 | xqs | 0.53 | | 0.57 | | 0.45 | | 0.59 | | 0.37 | | 0.40 | | | B05 | | | | | | YQS | | 0,63 | 0.72 | | | 0.54 | 0.73 | | | C.34 | 0.53 | | | | | | | | | M | 0.44 | 0.86 | 0.55 | 0.11 | 0.35 | 0.38 | 0.56 | 0.11 | 0.29 | 0.20 | 0.40 | 0.07 | | | | | | | | HOV | 0.35 | 0.39 | 0.40 | | 0.44 | 0.39 | 0.65 | | 0.40 | 0.28 | 0.53 | | | | | | | | | XM | 68.0 | | 1.15 | | C.85 | | 1.05 | | 0.97 | | 1.17 | | | T 5 | | | | | | YM | | C.79 | 1.32 | | | 0.50 | 1.01 | | | 0.56 | 1.14 | | | - | 1.0 | -0.20 | -3.0 | -1.7 | 3.4 | xqs | 0.69 | | 1.03 | | 0.89 | | 1.07 | | 0.90 | | 1.07 | | | BC4 | | | | | | Yes | | 0.87 | 1.58 | | | 0.49 | 1.03 | | | 0.48 | 1.15 | | | į | | | | | | ru | 0.73 | 0.65 | 1.02 | 0.20 | 0.71 | 0.73 | 1.12 | 0.13 | 0.75 | 0.48 | 0.94 | 0.05 | | | | | | | | нои | c.83 | 0.나 | 1.16 | | 0.77 | 0.35 | 0.90 |
 | 0.83 | 0.42 | 1.15 | | TABLE C-I (Concluded) | Casel | Stal | ility | | | Turbu- | | | | | Fixed | Base | | | | | Moving | | | |-------|------|--------|----------|------|-------------------------------|-------------------|----------------|-----------------|-------------|------------------|-----------------|-------|------|------|-----------------|--------|-------------|-----------------| | Banic | Deri | Vacive | :5 | | lence, | 3v5 | | Filot | | , | | Pilot | | | | Pilo | | , | | Conf. | Mus | Xu | Mg | Mg | $\sigma_{u_g} = \sigma_{v_g}$ | task ³ | ж ₅ | Le ₅ | | ⊮ _e 5 | Mc ₅ | Lc5 | Sim. | 1105 | и _{с5} | Lc5 | Sim! | N _{c5} | | | | 1 | | | | XM | 1.09 | <u> </u> | 1.46 | | 0.89 | | 1.18 | | 1.07 | | 24 | | | 76 |] | | | | | YM | | 0.75 | 1.37 | | <u> </u> | 0.64 | 1.25 | | | 0.74 | 1.36 | | | - | 1.0 | -0.05 | -2.1 | -2.5 | 3.4 | xçs | 0.95 | | 1.18 | | 1.0 | | 1.28 | | 1.09 | | 129 | | | BC2 | | | | | | YQS | | 2.14 | 1.47 | | | 0.68 | 1.22 | | | 0.74 | 1.22 | | | | | | ļ | | | TU | 0.73 | 0.74 | 1.20 | 0.12 | 0.91 | 6.94 | 1.40 | 0.11 | 1.28 | 0.79 | 1.75 | 0.05 | | | | | | | | HOV | 0.87 | 0.54 | 1.29 | | 82.0 | 0.45 | 1.01 | | 0.98 | 0.43 | 1.18 | | | | | | | | | МХ | 0.87 | | 1.05 | | 0.92 | | 1.30 | | 0.90 | | 1.07 | | | T13 | | ĺ | | | | Ж, | | 0.31 | 1.31 | | | 0.65 | 1.30 | | | 0.58 | 1.06 | | |] - | 1.0 | -0.20 | -1.1 | -2.5 | 3.4 | λQS | 0.93 | | 1.05 | | 0.99 | | 1.32 | | 0.87 | | 1.01 | | | EC6 | | | | | | xú2 | | λ.37 | 1.90 | | | 0.80 | 1.39 | | | 0.62 | 1.11 | | | | | | | | | าบ | o.81 | 0.68 | 1.08 | 0.09 | 0.95 | 0.75 | 1.32 | 0.13 | 0.89 | 0.52 | 1.34 | 0.13 | | | | | <u> </u> | | | HOV | 0.85 | 0.58 | 1.30 | | 0.77 | 0.37 | 0.98 | | 0.79 | 0.42 | 1.07 | | | | | | | | | ХМ | | | | | 1.13 | | 1.60 | | 1.09 | | 1.50 | | | T114 | | | | | | YH | | | | | | 0.92 | 1.64 | | | 0.83 | | | | - | 1.0 | -0.20 | -2.1 | -2.5 | 5.8 | xqs | | | | | 1.31 | | | | 1.13 | | 1.30 | | | BC6 | | | | | | 1,62 | | | | | | 0.86 | | | | 0.72 | 1.39 | | | | | | | | | าบ | | | | | 1.00 | 1.13 | 1.63 | 6.13 | 0.90 | 0.70 | 1.27 | 0.05 | | | | | | | | нол | | | | | 1.31 | 0.97 | | | 1.03 | 0.54 | 1.24 | | | | | | | | | ХМ | 1.17 | | 1.90 | | 1.08 | | 1.85 | | | | | | | 725 | | | | | | ΥМ | | 1.21 | 1.87 | | | 0.93 | 1.58 | | | | | | | - | 1.0 | -0.20 | -1.1 | -2.5 | 8.2 | xqs | 1.57 | | 5.50 | | 1.18 | | 1.70 | | | | | | | DC6 | | | | | | YQS | | 1.51 | 8.00 | | | 1.29 | | | | | | | | | | | | | | TU | 1.53 | 1.07 | 1.90 | 0.28 | 1.09 | 1.21 | | 0.12 | | | | | | | | | | | | HOV | 1.21 | 1.14 | 1.90 | | 1.19 | 2.04 | 1.97 | | | | | | | | | | | | | ХМ | 0.97 | | 1.28 | | 0.98 | | 1.13 | | 1.14 | | 1.31 | | | тъб | | | | | ļ | YM | | 0.82 | 1.35 | | | 0.97 | 1.41 | | | 0.55 | 1.33 | | | - | 1.0 | -0.05 | -2.0 | 0 | 3.1. | Xəs | 1.02 | | 1.27 | | 1.03 | | 1.21 | | 1.24 | | 1.50 | | | BC3 | | | | | | YQS | | 1.32 | 1,80 | | | 0.80 | 1,24 | | | o.54 | 1.16 | | | | | | | | | TU | 0.91 | 0.80 | 1.35 | 0.11 | 1.35 | 0.83 | 1.60 | 0.13 | 0.93 | 0.65 | 1.16 | 0.01 | | | | | | | | HOV | 0.81 | 0.60 | 1.24 | | 0.88 | 0.60 | 1.29 | | 0.87 | 0.35 | 1.04 | | ^{1.} Wind simulation included mean wind, $\mathbf{U}_{\mathrm{m}} = 10$ kts. Thrust vector control available to trim longitudinal steady forces. ^{2.} Symmetrical configurations - la .eral derivative has same value as corresponding longitudinal derivative. ^{3.} Key: XM, longitudinal maneuvering; YM. lateral maneuvering; XQS, longitudinal quick stop; YQS, lateral quick stop; TU, * 180 deg turn-over-a-spot; NOV, precision hover. ^{4.} Stm.: Simultaneous control moment usage, exceedance computations performed on the function (IM_cI + IL_cI). TABLE C-II (Concluded) | Casel | | | | | | | | | | Fix | ed Bas | e | | | | 4 | bving | | | |-------|-------------|------------------|-----------------|----------------|------------------|---------|-------|--|--------------|--------------|-----------------|-----------------|-----------------|------|-----------------|--------------|----------|------------|-----------------| | Basic | Star
Der | dility
Lvativ | es ² | | Lag | Delay | Sub- | | Filot | | | | Pilot | | | | Pilot | | | | Conf. | Mug | | | Μ _θ | τ_e, τ_a | de,da | Task3 | Mc5 | Le5 | Sim. | Nc ₅ | Mc ₅ | Lc ₅ | Cim. | N _{C5} | Mc5 | Le5 | Sim. | N _{C5} | | | | | | | | | хм | | | | | 0.81 | | 1.13 | | | | | | | 1245 | | | | | | | YM | <u> </u> | | | | | 0.59 | 1.28 | | | | | | | - | 1.0 | -0.20 | 1.1 | -2.5 | 0.60 | 0 | XQS | | | | | 0.78 | | 1.04 | | | | <u> </u> | | | 106 | | | | | | | YƏS | | | | | | 0.68 | 1.29 | | | | <u> </u> | | | | | | | | | | TU | | | | | 0.96 | 0.72 | 1.37 | 0.08 | | | | | | | | | | | | | HOV | | <u> </u> | | | 0.94 | 0.58 | 1.18 | | | <u> </u> | | | | | | | | | | | ХМ | | | <u> </u> | | 0.34 | | 0.48 | | | | | | | LL 23 | | | | | | | YM | | <u> </u> | | | | 0.29 | 0.47 | | <u> </u> | | | | | - | 0.33 | -0.20 | -1.7 | -4.2 | 0 | 0.2 | xqs | <u> </u> | | | | 0.35 | | 0.42 | | | | | | | BC1 | | | | | | | YQS | | ļ
 | | | | 0.53 | 0.67 | | | | | | | | | | | | | | TU | <u> </u> | <u> </u> | | | 0.29 | 0.34 | 0.52 | 0.12 | | | | | | | | | | | | | HOA | | | <u></u> | | 0.31 | 0.35 | 0.57 | | | | <u> </u> | | | | İ | | | | | | XM | <u> </u> | | ļ | | 0.33 | | 0.41 | | <u> </u> | | | | | LL-24 | | | | | | | YM | | | <u> </u> | | <u> </u> | 0.25 | 0.48 | | <u> </u> | <u> </u> | | | | - | 0.33 | -0.20 | -1.7 | 4.2 | 0.3 | 0.1 | xqs | | | | | 0.33 | | 0.39 | | L _ | | | | | BC1 | | | | | | | YQS | | | | | | | 0.56 | | | ļ | | | | | | | | İ | | | TU | | ļ | <u> </u> | <u> </u> | 0.25 | 0.21 | 0.39 | 0.11 | | | ١. | | | | <u> `</u> | | _ | | <u> </u> | | нои | | | <u> </u> | <u> </u> | 0.29 | 0.19 | 0.41 | | | | <u> </u> | | | | | | | | | | XM | <u> </u> | ļ | | <u> </u> | 0.59 | ļ | 1.24 | | | <u> </u> | ļ | _ | | LL-25 | | | | Ì | | | YM | | <u> </u> | | | - | 1.10 | 1.29 | | | ļ | ļ - | ļ | | - | 0.33 | -0.20 | -1.7 | -4.2 | 0.3,0 | 0.1,0 | xos | <u> </u> | | <u> </u> | <u> </u> | 0.85 | | 1.33 | <u> </u> | | | <u> </u> | <u> </u> | | BC1 | | | | Ì | | | YQS | | | | <u> </u> | ļ | 1.14 | 1.34 | <u> </u> | <u> </u> | | ļ | | | | | | | | | | TU | <u> </u> |
| | | 0.68 | <u> </u> | ļ | 0.09 | | | _ | <u> </u> | | | <u> </u> | | | <u></u> | L | <u></u> | HOA | <u>L</u> | <u>L_</u> | | | 0.55 | 0.95 | 1.27 | | <u> </u> | | | <u></u> | ^{1.} Wind simulation included mean wind, $U_{\rm m}$ = 10 kts. Thrust vector control available to trim longitudinal steady forces. ^{2.} Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. Key: XM, longitudinal maneuvering; YM, lateral maneuvering; XQS, longitudinal quick stop; YQS, lateral quick stop; TU, ± 180 deg turn-over-a-spot; KOV, precision lover. ^{4.} Sim.: Simultaneous control moment usage, exceedance computations performed on the function (IMcI + ILcI). ### TABLE C-III # PERCENT TIME PITCH, ROLL AND YAW CONTROL-MOMENT COMMANDS EXCEEDED INSTALLED MOMENT LIMITS ### Vertical and Directional Parameters Listed in Table A-I See Eng of Table for Explanation of Notes | Casel | Sta | bility
ivati | , 2 | | | rol M | ont. | Lag | Delay | Sub- | | Pilot | | Lxed B | | Pilot | R | | | oving
Pilot | | | |----------------|--------------|-----------------|----------|--------------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|------|-------|------|-------------------|--|----------------|----------|--------------------| | Basic
Conf. | Mug | Xu | Mo | Ма | Men | | Non | | de,ca | -Trisk3 | PHE. | PLI. | PSL | Pil | PML | | | P _{NI} , | PMI, | FLI, | PSL | P _{III} , | | | | | - | Ť | | | | | | 'XM | | | _ | | 7.6 | | 1.6 | | 14.9 | | ٥ | | | um. | | | | | | | | | | YM | | _ | | | | 4.4 | | _ | | o | ٥ | | | | 0.33 | -0.05 | -1.7 | 4.2 | p.3⊌0 | 0.115 | 0.130 | ٥ | ٥ | XQS | | | <u> </u> |
 | 21.2 | | 13.0 | _ | 9.7 | | ٥ | | | BCl | | | | | | | | | | YQS | | - | <u> </u> | | | 8.6 | 4.0 | <u> </u> | | 0. | 0 | | | | | | | | | | | | | าบ | | | | | 1.2 | 2.3 | 0 | 3.1 | 2.0 | 1.3 | 0 | 8.8 | | | | | | | | | | | | HOV | | | | | 3.0 | 1.1 | 0.2 | | 0.8 | 0.2 | 0 | | | | | | | | | | | | | ХМ | 0 | | 0 | | 0.9 | | 0 | | ٥ | | ٥ | | | LV2 | | ĺ | | | | |] | | | Xs1 | | 0 | 0 | | | 0.5 | ٥ | | <u> </u> | 0 | ٥ | | | | J.33 | -0.05 | -1.7 | -4.2 | 0.396 | 0.457 | 0.132 | 0 | 0 | хQЗ | 0 | | ٥_ | | 8.1 | | 0 | | 07 | _ | 0 | | | BC1 | | | | | | | | | | YQS | | <u></u> | 2_ | | | 4.3 | ٥ | _ | | 0.2 | o | | | | | | | | ļ | | | | | TU | 0 | 0 | 0 | ٥ | ¢.9 | 1.5 | ٥ | ٥_ | c.3 | 0.4 | 0 | 0 | | | | | | | | | | | | Hov | 0 | 0 | ٥ | | 2.0 | 0.3 | ٥ | | 0.2 | ٥_ | 0 | | | | | | | | 1 | | | | | М | | | | | 2.3 | | 0 | | <u> </u> | | | | | LM3 | | | | | | | | | | YM | | | | | | 0.1 | 0 | | | | | | | • | 0.33 | ·0.05 | -1.7 | -4.2 | 0.432 | 0.493 | 0.144 | 0 | 0 | xes | <u></u> | | | | 2.0 | | 0 | | | | | | | BCl | | | | | | | | | | YQS | | | | | | 2.8 | ٥ | | | | | | | | | | | | | | | | | TU | | | | | С | 1.6 | ٥ | ٥ | <u> </u> | | | | | | <u> </u> | | | <u> </u> | | | | | | KOA | ļ | | | | 1.9 | 0.3 | ٥ | | <u></u> | | | | | | | | | | | | | | | _ хж | <u> </u> | ļ | | | | | | | 1.02 | | c | | | LM5 | | | | |] | | | | | YM | - | | ļ | | | | | | | 1.6 | 0 | | | - | 0.33 | -0.20 | -1.7 | 2, يه | 0.3∞ | 0.280 | 0.120 | ٥ | ٥ | XQS | <u> </u> | | <u> </u> | | | | | | <u> </u> | _ | 0 | | | BC5 | | | | | | | | | | YQS | | <u> </u> | | | | | | <u> </u> | | 5.0 | ٥ | | | | | | | | | | | | | TU | ļ | | | | | | | | 0.6 | 1.7 | ٥ | _0 | | | <u> </u> | | | | | | | | <u> </u> | HOV | _ | | | | | | | <u> </u> | 0_ | 0.3 | 0_ | | | | | | | | | | | | | XH | 0_ | <u> </u> | 0 | | | | | <u> </u> | | | | | | THE | | | | | | | ĺ | | | <u> </u> | ļ | 3.7 | 0 | | | | | ļ | | _ | _ | | | • | 0.23 | •0.20 | -1.7 | -4.2 | 0.350 | ი.36ე | 0.150 | ٥ | 0 | XQS | 3.5 | | ٥ | | | | | | <u></u> . | | | | | 105 | | | | | | | | | | YQS | | 18.3 | 0 | | | | | | | _ | | | | | | | | İ | | | | | • | TU | 1.6 | 3.2 | 0 | ٥ | | | | | | _ | | | | | | | - | | <u> </u> | - | | | | HOV | ٥ | 1.9 | 0 | | | _ | | <u> </u> | <u> </u> | <u> </u> | - | | | | | | | | | | | | | XM | - | - | - | | 1.8 | | .0 | | - | | | | | IM9 | | | | | | 1 | ĺ | | | - YM | - | - | | | | 0 | ٥ | | <u> </u> | | \vdash | | | • | - 1 1 | -0.20 | -3.0 | -1.7 | 0.902 | 0.666 | 0.193 | ٥ | ٥ | XQS | - | | - | | 2,4 | | 0_ | | - | | | | | BC4 | | | | | | | | | | YQS | | - | - | | | 0.1 | | | | - | - | | | | | | | | | | | | | 17. | | - | | | 0.5 | 6.1 | 0 | 0 | | | _ | | | | | | <u> </u> | <u></u> | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | Kev | | <u></u> | <u></u> | | ٥ | 0 | 0 | <u> </u> | <u>L_</u> | <u> </u> | Ш | | ### TABLE C-III (Concluded) | Casel | Stability Derivatives ² | | | | Maxi | inim
rol M | | | | | | | | | | | | | ., | | D | | |-------|------------------------------------|-------|------|------|---------|---------------|-----------------|------------------|-------|-------------------|------|------|-----|-----------------|-----|-------|--------------|-----|-----------------|----------------|-----------------|-----------------| | Basic | Derivatives ² | | | | | lable | | lag | Delay | Sub- | | Pilo | t A | ixed E | | Pilot | | | | oving
Pilot | | | | Conf. | Mus | Χu | 19 | Мд | Исп | Lon | N _{Cm} | τ_e, τ_a | ce,de | Task ³ | PML. | FLL | PSL | P _{NL} | PVZ | PLL | $P_{\rm SL}$ | PHL | P _{N7} | PLI | F _{SI} | P _{NI} | | | | | | | | | | | - | XM | c.3 | | 0 | | 2.3 | | 0 | | 0.2 | | 0.2 | | | rato | | | | | | | | | | YM | | 0.1 | 0 | | | 0.3 | 0 | | | 0 | | | | - | 1.0 | -0.20 | -3.0 | -1.7 | 0.954 | 0.727 | 0.211 | 0 | 0 | XQS | 1.7 | | ο , | | 0.8 | | 0 | | 3.2 | | 0.0 | | | BC4 | | | | | | | | | | YQS | | 0 | 0 | | | 0 | o | | | 0.66 | 0.0 | | | | | | | | | | | | | TU | 0 | 0 | O | ٥ | υ | 7.7 | 0 | ٥ | 0.5 | 2.7 | Ö | ٥ | | | | | | | | | | | | нол | 0 | 0 | 0 | | 1.6 | 0 | ٥ | | 0.2 | ò | 0 | | | | | | | | | | | | | хім | ٥ | | 0 | | 0.5 | | ٥ | | | | | | | เษา | | | | | | | | | | ΥM | | 0 | ٥ | | | c.6 | 0 | | | | | | | - | 1.0 | -0.2 | -1.1 | -2.5 | 0.979 | 0.825 | 0.187 | 0 | 0 | XQS | 0 | | 0 | | 6.2 | | 0 | | | | | | | 806 | | | | | | | | | | YQS | | 0.6 | *o | | | 2.4 | 0 | | | | | | | | | | | | | | | | | าบ | | | | | ი.2 | 2.6 | o | 0 | | | | | | | | | | | | | | | | усн | | | | | 1.4 | 0.6 | 0 | | | | | | | | | | | | | | | | | хм | | | | | 0 | | 0 | | 0 | | 0 | | | IMIF | | | | | | | | | | YM | | | | | | 0 | ٥ | | Ť. | 0 | 0 | | | - | 1.0 | -0.2 | -1.1 | -2.5 | 1.068 | 0.900 | 0.204 | 0 | 0 | xqs | | | | _ | ٥ | ٥ | 0 | | | ٥ | ٥ | | | | | | | | | | | | | TU | | | | | ٥ | ٥ | 0 | 0 | 0 | 0.3 | 0 | 0 | | | | | | | İ | | | | | HOV | | | | | 0.2 | 0 | O | | 0 | 0 | 0 | | | | | | | | | | | | | хм | 0 | | 0 | | | | _ | | | | | | | 1305 | | | | | | | <u> </u> | | | YM. | | 0 | 0 | | | | | | | | | | | - | 1.0 | -0.2 | -1.1 | -2.5 | 1.157 | 0.975 | 0.221 | 0 | 0 | xas | 0 | | 0 | | | | | | | Ì | | | | BCG | | | | | | | | | | YQS | | 3.0 | 0 | าบ | 0.1 | 0 | 0 | ٥ | HOV | 0 | 0 | 0 | XH | | | | | 0.6 | | o | | 0.1 | | 0 | | | 120.7 | | | | | | | | | | MY | | | | | | ٥ | c | | | 0 | 0 | | | - | 0.33 | -3.05 | -1.7 | -4.2 | 0.396 | 0.457 | 0.132 | 0.3 | 0.1 | xçs | | | | | 1.5 | | 0 | | 2.1 | | 0 | | | BC1 | | | | | | | | | | Aca | | | | | | 8.8 | 0 | | | ٥ | o | | | | | | | | | | ļ | | | ΤU | | | | <u> </u> | 0.3 | 0.3 | 0 | ٥ | О | 0 | 0 | 0 | | | | L | | | | | L | | | 1:0V | | | | | 1,2 | 1.1 | ٥ | | 0.4 | 0.2 | 0 | | | | | | | I - | , —
 | | | | | хн | | | | | | | | | 0 | | 0 | | | 11418 | | | | | | | | | | YH | | | | | | | | | | o | (1 | | | - | 0.33 | .0.05 | -1.7 | -4.2 | 0.432 | 0.498 | 0.144 | 0.3 | 0.1 | 728 | | | | | | | | | 0.6 |] | 0 | <u> </u> | | DC1 | | | | | | | | | 1 | YQS | | | | | | | | | | ٥ | 0 | | | | | | | | | | | | | TU | | | | | | | | | ٥ | 0 | ი | o | | | | | | | | | | | | нол | | | | | | | | | 0.1 | o | 0 | | ^{1.} Wind simulation included mean wind, $U_{\rm m} = 10$ kts. Thrust vector control available to trim longitudinal steady forces. ^{2.} Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. Key: XM, longitudinal raneuvering; IM, lateral maneuvering; XQS, longitudinal quick stop; YQS, lateral quick stop; YU, ± 180 deg turn-over-a-spot; HOV, precision hover. ^{4.} P_{S1} : Percent time that commanded accents exceeded installed limit on simultaneous control excent usage, $(M_{C_M} + C_{C_M})$. TABLE C-IV # PITCH, ROLL AND YAW CONTROL-MOMENT LEVELS EXCHEDED 5 PERCENT OF THE TIME FROM THE STUDY OF INTER-AXIS MOTION COUPLING #### Vertical and Directional Parameters Listed in Table A-I | Case ¹ | | b121t; | | | | | ion
pling | | | | | | xed. B | ese | | | | Mo | ving B | 45e | | |-------------------|------|--------|----------|------|--------|----------|--------------|-------------|----------|--------------|--------------|--------------|-----------------|-----------------|------|----------|-----------------|-------------|--------|--|------| | Basic | Der | , | <u> </u> | Par | ameter | <u>s</u> | Sub- | | Pilot | | | | Pilot | 2 | | | Pilot | В | | | | | Conf. | Mus | Xu | Mq | Мθ | P | 1,d | May/Las | £,′∴,4e | Task | Ma5 | Loz | Simi | N ₀₅ | M _{C5} | Lc5 | Sim." | N _{C5} | Mes | Lc5 | Sin. | Hes | | | | | | | | | | | ХЖ | | | | | 0.48 | | 0.67 | | 0.36 | | 0.43 | | | ICI | | | | | | | | | YM. | | | <u> </u> | | ļ | 0.39 | 0.66 | <u> </u> | | 0.24 | 0.49 | _ | | | 0.33 | -0.05 | -1.7 | -4.2 | 2 | -2 | 0 | 0 | xes | ļ | | | <u> </u> | 0.43 | | 0.64 | | 0.48 | ļ | 0.59 | | | BC1 | | | | | | | | | YQS | | <u> </u> | | <u> </u> | - | - | 1.03 | - | | 0.35 | - | | | | | | | | l
i | | | | TU | | | | - | 0.41 | r.36 | | 0.17 | | 0.30 | 1 | _ | | | - | | | |
- | - | | | HOV | _ | | | | 0.54 | 0.41 | 0.86 | | 0.37 | 0.19 | 0.47 | | | 17.5 | | | | | | | | | XM | <u> </u> | | | | 0.61 | 0 51 | 0.96 | _ | | | | | | ł | 0.33 | -0.05 | -1.7 | -4.2 | 4 | -4 | 0 | 0 | xes | | | \vdash | | 0.81 | 0.5 | 1.25 | | <u> </u> | | - | | | BC1 | | | | | | | | | YQS | | | | \vdash | | 0.91 | 1.57 | - | | | - | - | | | | | | | | | | | TU | - | | | | 0.57 | 0.47 | 0.87 | 0.16 | | | - | | | | | | | | | | | | HOV | | | | | 0.68 | 0.47 | 1.01 | | | | | | | | | | | | | | | | хм | 0.40 | | 0.58 | | 0.39 | | 0.64 | | 0.34 | | 0.42 | | | LC). | | | | | | | | | YM | | 0.40 | 0.56 | | | 0.38 | 0.64 | | | 0.21, | 0.45 | | | ٠ | 0.33 | -0.05 | -1.7 | -4.2 | ٥ | ٥ | 0.50 | ~ი.50 | xqs | 0.58 | | 0.79 | | 0.47 | | 0.68 | | 0.36 | | 0.42 | | | BC1 | | | | | | | | | YQS | | 0.70 | 1.00 | | | 0.65 | | | | 0.31 | 0.54 | | | | | | | | | | | | TU | 0.36 | 0.40 | 0.58 | 0.11 | 2.28 | | 0.47 | 0.23 | 0.27 | 0.24 | 0.38 | | | | | | | |
 | | | | KOV | 0.37 | 6.29 | 0.51 | | 0.37 | 0.34 | | | 0.29 | 0.18 | | | | 1.05 | | | | | | | | | XX
YM | 0.37 | 0.20 | 0.65 | | 0.43 | | 0.57 | | 0.35 | | c.48 | _ | | | 0.33 | -0.05 | -1.7 | 4.2 | ۰ | ړ | 0.25 | -0.25 | | 0.53 | 0.37 | 0.70 | | 0.49 | 0.39 | 0.72 | | 0.47 | 0.33 | 0.53 | | | BC1 | | 0.00 | , | 7 | ١ | | V.L, | 0.2) | Yes | 0.55 | 0.72 | | | 0.43 | 0.63 | | | 0.47 | 0.33 | | | | | | | | | | | | | TU | 0.32 | c.33 | 0.53 | 0.06 | 0.40 | | 0.65 | 0.17 | 0.29 | | 0.4 | 0.05 | | | | | | | | | | | HOV | 0.39 | 0.29 | 0.54 | | 0.53 | 0.39 | 0.78 | | 0.35 | 0.19 | 0.46 | | | | | | | | | | | | ХМ | | | | | 0.87 | | 1.05 | | | | | | | rc8 | | | | | | | | | YM | | | | | | 0.73 | 1.28 | | | | | | | - | 0.0 | -0.05 | -2.5 | -0.5 | 2 | -2 | -0.25 | 0.25 | xqs | | | | | 0.85 | | 1.09 | | | | | | | BC2 | | | | | | | | | YQS | ļ | | | | | 0.70 | 1.32 | | | | | | | | | | | | | | | | w | | | | | 0.90 | 0.68 | 1.34 | 0.17 | | | | | | | | | | | | | | | нол | L | | | | 0.77 | 0.47 | 1.03 | | | | | | Wiri simulation included mean wind, U_m = 10 kts. Thrust vector control available to trim longitudinal steady forces. ^{2.} Symmetrical configurations - lateral derivative has same value as corresponding longitudinal derivative. Key: XM, longitudiral maneuvering; YM, lateral maneuvering; XGS, longitudinal quick stop; YQS, lateral quick stop; TU, ± 180 deg turn-over-a-spot; HOV, precision hover. ^{4.} Sim.: Simultaneous control moment usage, exceedance computations performed on the function (IMcI . Itcl). TABLE C-V # PITCH CONTROL-MOMENT AND THRUST-VECTOR-ANGLE LEVELS EXCEEDED 5 PERCENT OF THE TIME FROM THE STUDY OF INDEPENDENT THRUST-VECTOR CONTROL Vertical and Directional Parameters Listed in Table A-I | Casel | | Stabili
Derivat | ty 2 | | v. | hrust-
ector
ontrol | | | Pilo | Fixed 1 | · · · · · · · | | Moving | | |----------------|------|--------------------|--------|------|----------------|---------------------------|------|---------------|-----------------------------|---------|------------------|-------|--------|------| | Basic
Conf. | | | | T v. | ý ⁴ | aram. | и́т§ | Sub-
Task3 | | τv | Pilo | Tv Tv | Pilo | τ B | | Cont. | Mog | x _u | Mq | Мθ | | χ ₅ | MTS | | M _c ₅ | | Me _{s,} | 14 | Mes | _ ^Y | | | | | | ļ | | | | XM | 0.33 | ļ | 0.29 | ļ | 0.25 | | | LII | | i
i | | | | | | XQS | 0.29 | | 0.34 | ļ | 0.33 | L | | - | 0.33 | -0.05 | -1.7 | -4.2 | 5 | - | - | TU | 0.27 | 2.77 | 0.31 | 7.86 | 0.21 | 2.∞ | | BC1 | | | | | | | | HOV | 0.29 | | 0.30 | | 0.25 | | | | T | | | | | | | ХМ | | | 0.32 | | 0.28 | | | LI3 | | | | | | | | XQS | | | 0.33 | | 0.27 | | | - | ۶د ٥ | -0.05 | 1 -1.7 | 4.2 | 20 | | - | TU | | | 0.22 | 5.50 | J.24 | 2.50 | | BC1 | | | | | | | | нол | | | 0.29 | | 0.27 | | | | | | | | | | | хм | 0.93 | | 0.93 | | 0.80 | | | LI6 | | } | | | | | | xqs | 0.88 | | 0.89 | | 0.86 | | | - | 1.0 | -0.20 | -3 | -1.7 | 50 | - | - | าบ | 0.79 | 9.15 | 0.81 | 10.6 | 0.67 | 4,20 | | BC4 | | | | | | | | HOV | 0.72 | | 0.75 | | 0.68 | | | | | | 1 | | | 1 | | ХМ | | T | 0.35 | | | | | F115 | | | | | | | | xes | | | 0.39 | | | | | | 0.33 | -0.05 | -1.7 | -4.2 | - | 5 | 1 | TU | | | 0.29 | 20.6 | | | | BC1 | | | | | | | | ноч | | | 0.32 | | | | ^{1.} Standard wind simulation; $\sigma_{\rm u_{\rm g}}$ = $\sigma_{\rm v_{\rm g}}$ = 3.4 ft/sec, $\rm U_{\rm m}$ = 10 kts. ^{2.} Symmetrical Configurations - lateral derivative has same value as corresponding longitudinal derivative. ^{3.} Key: XM, longitudinal maneuvering; XQS, longitudinal quick stop: TU, ±180 deg turn-over-a-spot; FOV, precision hover. ^{4.} Thumb switch thrust vector angle control, conventional attitude control. ^{5.} Control stick thrust vector control, thumb switch attitude control. #### TABLE C-VI PITCH, ROLL AND YAW CONTROL-MOMENT LEVELS EXCEEDED 5 PERCENT OF THE TIME FROM THE STUDY OF RATE-COMMAND/ATTITUDE-HOLD CONTROL Vertical and Directional Parameters Listed in Table A-I See End of Table for Explanation of Notes | Case ¹ | 9. | tebilit
erivat | y
ives | | faram
for
Secon
Order
Dynam | d | Sub- | | Filot | | ixed Ba | 3e | Pilot | . В | | | Pilot | g Base | | |-------------------|------|-------------------|--------------|--|--|------------|------|--|-------|-------|---------------|------|---------|------|--------------|--------------|----------------|--------------|-----| | winf. | Mus | Υ _u | Ma | No | 3 | ω_n | lask | Mcs | L-5 | Sim." | Nes | Mrs | Ic, | Sim. | Ncs | Mc, | Les | Sim." | Ncc | | \ | | | | | | | ХМ | | Ι | | | 0.58 | <u></u> | 0.65 | - <u>-</u> - | | | | | | '.à1 | | | | | | | YM | | | | - | | 0.58 | 0.90 | | 1 | - | | | | - | 0.33 | -0.05 | -5 | -8 | 0.35 | 8.8 | XQS | | | | | 0.89 | | 0.98 | | | | | | | BC1 | | | | | | | YQS | | | | | | 0.75 | 1.01 | | | ļ
1 | | | | | | | | | | İ | TU | | | | | 0.54 | 0.115 | 0.75 | 0.11 | | | | | | | | | | !
 | | | нол | | | | | 0.62 | 0.50 | 0.86 | | | | : | | | | | | | | | | ХМ | | | | | 0.66 | | 0.84 | <u></u> | 0.30 | | 0.39 | | | TIS | | | | | | | УM | | | | | | 0.58 | 0.93 | | | ,.27 | 0.46 | | | - | 0.33 | -0.05 | -2 | -40 | 0.16 | 6.3 | XQS | | | | | 0.97 | | 1.08 | | 0.34 | | ი,ვგ | | | BCI | | | | | j | | YQS | | | | | | 0.74 | 1.17 | | | 0.28 | 0.45 | | | | | | | ! | | | TV | | | | | 0.57 | 0.47 | 0.88 | 0.17 | 0.24 | 0.34 | 0.44 | | | | | | <u> </u> | Ĺ | | | нол | | | | | 0,69 | 0.08 | 1.07 | | 0.77 | 0.2) | 0.40 | | | | | | | | | | 771 | | | | | 0.45 | | 0.59 | | | | | | | LR3 | | | | | | | YM | | | | | | 0.42 | 0.72 | | | | | | | - | 0.33 | -0.66 | -14 | -8 | 0.72 | a.8 | 193 | | | | | 0.59 | | 0.82 | | | | | 1 | | BCl | | | j | | | | YQS | | | | | | 0.66 | 1.00 | | | | | | | | | | | | | | TU | | | | | 0.37 | 0.39 | 0.63 | 0.13 | | | | | | ***** | | | | | | | HCA | | | | | 0.41 | 0.44 | 0.73 | | | | | | # TABLE C-VI (Continued) | Case ¹
-
Basic | 3 | stabilit
erivat: | y
ives ² | | for
Secon
Order
Dynam | d.— | Jub- | | Pilot | | ixed Bai | Ĭ | Pilot | . B | | | Pilot | o Base | | |---------------------------------|------|---------------------|------------------------|----------|--------------------------------|------------|---------------------------|-----------------|-----------------|-------------------|----------|------|-----------------|------|------------------|----------|----------|--------|------| | Conf. | Man | Xu | 11/4
 | !'θ | ξ | ω_n | Jub-
Task ³ | Ne ₅ | Lr ₅ | Sim.4 | N°C5 | Mc5 | le ₅ | Sim. | " ² 5 | No. | Leg | Sim." | No.5 | | | | | | | | | MK | | | | | 0.41 | | 0.58 | | | | | | | urs | | | | | | | M | | | | | | 0.48 | 0.60 | | | | | | | - | 0.33 | -0.05 | 46 | -12 | 0.87 | 3.44 | XQ3 | | | | <u> </u> | 0.45 | | 7.60 | | | | | | | PC1 | | | | | | | YQS | | | | <u> </u> | | 0.81 | 1.02 | | <u> </u> | | | | | | | | | | | | าบ | | | | } | 0.35 | 0.42 | 0.5> | 0.12 | | <u> </u> | | | | | | | | <u> </u> | | | нол | | | | | 0.43 | 0.41 | 0.52 | | | | | | | | | | | | | | XM | | | | | 0.48 | | 0.62 | | 0.24 | | 0.37 | | | LR6 | | | | }
i | | | ΥM | | | | | | 0.44 | 0.69 | | | 0.28 | 38.c | | | | 0.33 | ₹0. 05 | -5 | -40 | 6.67 | 6.32 | XQE | | | | | 0.50 | | 0.65 | | 0.35 | | 0.38 | | | PCl | | | | | | | YQS | | | | | | 0.56 | 0.77 | | | 0.26 | 0.1,2, | | | | 1 | | | | | | าบ | | | | | 0.34 | 0.35 | 0.51 | 0.13 | 0.27 | U.24 | 0.39 | | | | 1 | | | | | | HOV | | |] | | 0.40 | 0.38 | 0.65 | | 0.29 | 0.20 | 0.40 | | | | | | | | | | XM | 0.29 | | 0.35 | | | | | | | | | | | LR8 | | | | | | | λ'n | | 0.80 | 0.40 | | | | | | | | | | | - | 0.33 | -0.05 | -10 | -50 | | | xqc | | | ը _ս նե |] | | | | | | | | | | BC1 | | | | | | | 168 | | 0.47 | 6.59 | | | | | | | | | Ì | | | | | | | | | T. | 0.33 | 0.29 | 0.39 | .059 | | | | | | | | | | | | | | | | | HOA | 0.23 | 0.19 | 0.37 | | | | | | | | | | ### TABLE C-VI (Concluded) | case1 | | | | | Faram
for
Secon | d | | | | | Fix | ed Bas | | | | м | oving | | | |-------|--|--|--|-----|-----------------------|--|-------|--|-----------|----------|-----|--------|-------|------|----------------|------|-------|-------------|--------------| | Pasic | De | ability
rivativ | 22 | | Dynasi | ics | Sub- | | Pilo | | | ļ | Pilot | | | L | Pilot | · · · · · · | · | | Conf. | Mug | X _u | Mq | N.O | 3 | w | Task3 | Mag | L_{C_5} | Sim. | Nc5 | Mcg | Lc5 | Sim! | 1105 | Mc5 | rea | Sim. | Nr5 | |
 | | | | | | ж | | | | | 1.40 | | 1.93 | | | | | | | LR10 | | | | | | | YM | | | | | | 1.06 | 1.40 | | | | | | | - | 1.0 | -0.20 | -2 | -25 | 0.20 | 5 | xqs | | | | | 1.37 | | 1.90 | | | | | | | BC4 | | | | | | | YQS | | | | | | 1.03 | 1.67 | | | | | | | | | | | | | | TU | | | | | 1.03 | 1.01 | 1.61 | 0.20 | | | | | | | | | | | | | HOV | | | | | 1.19 | 0.83 | 1.75 | | | | | | | | | | | | | | мх | | | | | 1.13 | | 1.50 | | 0.83 | | 1.09 | | | LR11 | | | | | | Ì | YM | | | | , | | 0.90 | 1.63 | | | 0.53 | 1.13 | | | - | 1.0 | -0.20 | -14 | -16 | 0.50 | 4 | xqs | | | | | 1.15 | | 1.49 | | 0.83 | | 1.02 | | | BC4 | } | | | | | | YQS | | | | | | 0.99 | 1.75 | | | 0.48 | 1.08 | | | | | | | | | | TU | | | | | 0.86 | 0.79 | 1 27 | 0.19 | 0.62 | 0.64 | 1.09 | | | | | | | | | | нол | | | | | 1.16 | 0.64 | 1.65 | \vdash | 0.60 | 0.29 | 0.80 | | | | † | | | | | | XM | | | | | 1.64 | | 1.93 | <u> </u> | 0.80 | | 0.99 | | | LR14 | | | | | | | 17.4 | | | | | | 0.98 | 1.76 | 1 | | 0.57 | 1.07 | | | - | 1.0 | -0.20 | ~6 | -26 | 0.61 | , | XQC | | | | | 1.05 | | 1.28 | <u> </u> | 0.75 | | 0.90 | - | | BC4 | | | | | } | | YQS | 1 | | | | | 0.71 | 1.22 | - | | 0.59 | 1.13 | | | | | | | | | | TU | | | | | 0.84 | 0.82 | 1.3? | 0.18 | 0.69 | 0.65 | 1.02 | | | | | 1 | | | | | HOV | | | | | 1.01 | 0.69 | 1.59 | - | 0.67 | 0.30 | 0.85 | | ^{1.} Wind simulation included mean wind, $U_{m} = 10$ kt;. Thrust vector control available to trim longitudinal steady forces. ^{2.} Symmetrical configuration - lateral derivative has same value as corresponding longitudinal derivative. ^{3.} Key: XM, longitudinal maneuvering; YM, lateral maneuvering; XQS, longitudinal quick stop; YQS, lateral quick stop; TU, * 180 deg turn-over-s-spot; HGV, precision hover. ^{4.} Sim : Simultaneous control moment usage, exceedance computations performed on the function ($1M_{\rm e}i + 1I_{\rm e}i$. #### TABLE C-VII # PILOT COMMANDED AND TOTAL THRUST USAGE RESULTS FROM HEIGHT CONTROL STUDY Longitudinal, Lateral and Directional Parameters Listed in Table A-I See End of Table for Explanation of Notes (a) Five-Percent Exceedance Levels for Pitching Moment, $M_{\rm C_{\it 5}}$, and Incremental Thrust Increase Levels, $({\rm T/W-l})_{\it 5}$ | | | | | | | | | · | Fixed | Basa | | | |-------|--------|-----------------|--------|----------------|--------|-------|------------------|---------------|---------|---------|---------------|--------| | Case | | | | | | 1 | | Pilot A | | -100 | Pilot B | | | Rasic | F | arameters | 2 | lag, | Delay, | Sub-3 | M. | (T/W-1)5 for: | | No.5 | (T/W-1)5 for: | | | Conf. | 2wa | 2 _{Wg} | T/X | τ _h | ďħ | task | N _C 5 | Zoc oc+Zws w | Zgc. Sc | .65 | Zoc octZws w | ²oc oc | | | | | | | | ХМ | v.º6 | 0.007 | 0.010 | 0.34 | 0.023 | 0 055 | |] | | j . | | | ļ | YM | | 0.017 | 0.024 | | 0.025 | 0.024 | | H220 | -0.125 | -0.125 | 1.10 | 0 | 0 | XQS | 0.36 | 0.009 | 0.020 | 0.37 | 0.019 | 0.024 | | BC1 | -0.12, | -0 | | Ů | ľ | YQ: | | 0.034 | 0.035 | | 0.034 | 0.034 | | | | | | | !
[| HOV | 0.30 | 0.010 | 0.016 | 0.36 | 0.017 | 0.023 | | | |] | | | | LS | 0.29 | 0.052 | 0.062 | 0.35 | 0.024 | 0.033 | | | | | i | | | XM | 0.34 | 0.031 | 0.023 | 0.39 | 0.057 | 0.057 | | | | | | | | MX | | 0.055 | 0.057 | | 0.048 | 0.045 | | H221 | 0 | -0.25 | 1.10 | | ٥ | XQS | 0.47 | 0.030 | 0.029 | 9.37 | 0.026 | 0.029 | | BC1 | - | |] | | | YQS | | 0.069 | 0.043 | | 0.047 | 0.034 | | | | | | | | HOV | 0.29 | 0.029 | 0.038 | 9.33 | 0.014 | 0.023 | | | | Ì | | | | IS | 0.69 | 0.067 | | 0.32 | 0.061 | 0.067 | | | | | | | ``` | XM | 0.36 | 0.024 | 0.018 | | | | | | | } |] | | | YM | | 0.057 | 0.054 | | | | | HZ22 | -0.25 | ٥ | 1.10 | c | ٥ | XQ3 | 0.47 | 0.047 | 0.047 | | | | | BC1 | -0.0, | ľ | | ľ | ľ | YQS | | 0.050 | 0.048 | | | | | | | | 1 | | | HOV | 0.30 | 0.022 | 0.021 | | | | | | | J |] | | | IS | 0.30 | 0.070 | 0.060 | | | | | | | <u> </u> | | i | İ | XX | 0.37 | 0.008 | 0.005 | i | | | | | | | | | | YM | | 0.015 | 0.007 | | | | | H7.23 | .0.25 | -0.25 | 1.10 | 0 | o o | XQS | 0.46 | 0.007 | 0.008 | | | | | BC1 | 10,27 | 1 | 1 | ľ | ľ | YQS | | 0.026 | 0.018 | | | | | | | l | 1 | { | (| HOV | 0.30 | 0.009 | 0.009 | , | | | | _ | | l | L | | | l.S | 0.30 | 0.030 | 0.052 | | | | | | | | | | | XM | 0.39 | 0.042 | 0.042 | | | | | | | | ļ | | 1 | YM | | 0,123 | 0.116 | <u></u> | | | | HZI | ٥ | | . 1.15 | | | XQS | 0.32 | 0.082 | 0.095 | | | | | BCI | | | | | | YQ3 | | 0.108 | 0.108 | | | | | | | 1 | | | | HOV | 0.26 | 0.086 | 0.080 | | | | | | | | | | | LS | 0.34 | 0.122 | 0.121 | | | | | | | | | | | XM | 0.34 | 0.009 | 0.017 | | | | | | | | | | | YM | | 0.035 | 0,010 | | | | | H '3 | =U.25 | *0.25 | >1.15 | o. | | XQS | 0.39 | 0,006 | 0.010 | | | | | 801 | | 1 | | |) | YQS | | 0.054 | 0.015 | | | | | | | | | | | HOV | 0.29 | 0.008 | 0.008 | | | | | | | | | | | នេ | 0.26 | 0.028 | 0.045 | | | | ## TABLE C-VII (Continued) | Case | T | | | T T | | | | *************************************** | Fixed | i Base | | | |-------|----------|-----------------|--------|----------------|----------------|---------------------------|-----------------|---|--------|-----------------|---------------------------------------|--------| | - | | | | 1 | | <u>j</u> | | Pilot A | | | Pilot B | | | Basic | F | arameters | د
 | Ing, | Delay, | Sub-
task ³ | | (T/W-1) ₅ for | | [| (T/W-1) ₅ for | ; | | Conf. | 7. Wa | Z _{vs} | т/ж | τ _h | d _h | task | ^M c5 | 3c. dc+Zws. w | Za; oc | Mo ₅ | Zoc oc+Zws v | Zoc oc | | | | | | | | ХМ | | | | 1.027 | o c59 | 0.092 | | | 1 | | | 1 | | YM . | | | | | J.139 | 0.133 | | HZ25 | 0 | 0 | > 1.15 | 0 | 0 | XÇS | | | | 0.88 | 0.167 | 0.167 | | 'BC4 | 1 | | | 1 | } | YQS | | | | | 0,132 | 0.133 | | | | 1 | | į | | HOV | | | | 0.78 | 0.098 | 0.098 | | | <u> </u> | | | <u> </u> | | LS | | | | 0.83 | 0.169 | 0.15 | | | | | ! | | | ХМ | 0.89 | 0,025 | 850.0 | 0.85 | 0.029 | 0.045 | | | | | | | | 334 | | 0.028 | 0.019 | | ა.০23 | 0.017 | | HZ26 | -0,125 | -0.125 | - 1.15 | 0 | 2 | XQS | 0.98 | 0.015 | 0.015 | ೧.୦୩ | 0,010 | 0,009 | | 9C4 | | | | | | ୯ନ୍ୟ | | 0.043 | 0.039 | l | 0.024 | 0.02% | | | Ì | | | | | HOV | 0.74 | 0.034 | 0.030 | 0.87 | 0.027 | 0.023 | | | 1 | | | <u> </u> | | LS | ა.84 | 0.070 | 0 069 | 0.87 | 0,034 | ก.กษจ | | | | | | | | ХЖ | 0.85 | | 0.025 | | | | | | | 1 | | | | ΥM | | 0.017 | 0.039 | | | | | H227 | -0.25 | -0.25 | >1.15 | , | 0 | XAS | 0.84 | 0.009 | 0.034 | | · · · · · · · · · · · · · · · · · · · | | | BC4 | | | | 1 | | YQS | | 0.016 | 0.038 | | | | | | | | | | | 1.07 | 0.72 | ა.∞8 | 0.035 | | | | | | | | | <u> </u> | <u></u> | is | 0.76 | 0.016 | 0.079 | | | | | | | | | | | Y.Y | | | | 0.30 | ગ₊ ગ3ૄ | 0.045 | | | 1 | | | | | YM | | | | | | | | 1112 | -0.125 | -0.125 | 7.10 | 0.3 | 0 | XQS | | | | 0.37 | C.035 | 0,038 | | DC1 | 1-0.12) | 1 | 1 | | | YOS | | | | | 0.028 | 0.029 | | | | İ | | | | HCA | | | | 0.30 | 0.023 | 0.027 | | | | 1 | | Į | | LS | | | i | 0.29 | 0.048 | 0.053 | ### TABLE C-VII (Concluded) (b) Five-Percent Exceedance Levels for Pitching Moment, M_{c_5} , and Percent Time Commanded T/W of Pilot and SAS Exceeds Installed T/W | , | | | | | | | | | Fixed | Base | | | |-------------------|--|-----------------|----------|--------------|--------------------------|-------|-----------------|---|---|-----------------|--|--| | Case ¹ | | | | | | | | Pilot A | | | Pilot B | | | Basic
Conf. | Z _{Wa} P | Zw _s | 2
T/W | Ing, | Delay,
^d h | Sub-3 | ж _{е5} | P _{TL} for
Z _{fc} ·δc [†] Z _{vs} · w | P _{TL} for Z _{dc} ·dc | Ne ₅ | P _{TL} for $z_{\delta_c} \cdot \delta_c^{+Z_{w_s}} \cdot w$ | PTL for | | | | 1 | | | ********* | хм | 0.36 | 19.0 | 27.0 | | | <u> </u> | | | İ | | | | | XM. | | 38.0 | 65.0 | | | | | HZ6 | 1 | | | | | XQS | 0.1% | 21.0 | 30.0 | ├ | | ├──- | | RJ1 | -0.125 | -0.125 | 1.02 | 0 | ა | YQS | | 14.0 | 60.0 | | | | | 1.04 | | | | | | HOV | 0.32 | 10.0 | 14.0 | | | | | | } | 1 1 | | | | IS | 0.34 | 32.0 | 60.0 | | | ├ | | | | | | | | XM | 0.33 | 0.0 | 0.0 | | | | | | İ | | | | | YM | 0.33 | 3.0 | 0.0 | | | | | HZLO | | | | | | X | 0.39 | 0.0 | ≥.0 | - | | | | BC1 | -0.25 | -0.25 | 1.02 | 0 | 0 | 1705 | | 25.0 | 29.0 | | | | | | | | | | | HOY | 0.29 | 2.0 | 1.0 | | | \ | | | | | | | | LS | 0.29 | 17.0 | 16.0 | | | | | | | - | | | | XM | | | | 0.34 | 0.0 | 0.0 | | | 1 | | | 1 | | MY | | | | | 0.0 | 0.0 | | r:217 | 1 | | _ | | | XQS | | | | 0.39 | 0.0 | 0.0 | | BCI | -0.25 | -0.25 | 1.05 | ٥ | 0 | YQS | | | | 1.07 | 0.0 | 0.0 | | | | | | | | HOV | ****** | | | 0.36 | 0.0 | 0.0 | | | 1 | | | | | IS | | | | 0.32 | 3.0 | 8.0 | | | | † | | | | ХМ | 0.39 | 16.0 | 16.0 | - | | | | | 1 | ١ ، | | | | YM | | 0.0 | 0.0 | | | | | на | | | | | | XQS | 0.43 | 0.0 | 0.0 | 1 | | | | âc1 | -0.125 | -0.325 | 1.05 | 0.3 | 0 | YQS | | 7.0 | 0.0 | | ! | † | | | | | | | | HCV | 0.34 | 0.0 | 0.0 | +
 | İ | | | | | | | i | | IS | 0.34 | 2.0 | 4.0 | | 1 | | [.] Wind simulation included mean wind, $\theta_{\rm H}$. 10 Mes. Thrust vector control available to trim longitudinal steady forces. ^{2.} Tymmetrical Configurations - lateral derivative has same value as corresponding longitudinal derivative. Ney: XX
longit.diral raneuvering; YM, lateral raneuvering; XXI, longitudinal quick stop; YXI, lateral quick stop; LT, landing sequence; NGV, precision hover. #### TABLE C-VIII # YAW, PITCH AND ROLL CONTROL MOMENT RESULTS FROM THE DIRECTIONAL CONTROL STUDY Longitudinal, Lateral and Vertical Parameters Listed in Table A-I See End of Table for Explanation of Notes ### (a) Five-Percent Exceedance Control-Moment Levels | Casel | | | | ction | | | | | Fi | ced Eas | e | | | | м | leving | Base | | |-------------------------|----------|----------------|--------------|-------------|-----|-------------------|----------------|------------------|------|-----------------|-----------------|------------------|------|------------------|-----------------|-----------------|------|------------------| | -
Bastc ² | N, | | Para
Vari | water
ed | :8 | Sub- | | Pilot | | | | Pilot | | | | Pilot | | | | Conf. | | K _r | Non | | φψ | Task ³ | м _с | L _c 5 | Sim. | Ne ₅ | H ^{CF} | L _c 5 | Sin! | N _c 5 | Me ₅ | L _{e5} | Sim. | N _c 5 | | | | | | | | хм | | | | | | | | | 0.40 | | 0.50 | | | DI | | | | | | YM | | | | | | | | | | 0.26 | 0.43 | | | - | 0.005 | 0 | υL | 0 | ٥ | XQS | | | | | | | | | 0.43 | | 0.51 | | | BC1 | | | | | | YQS | | | | | | | | | | 0.27 | 0.49 | | | | | | | | | าบ | | | | | | | | | 0.30 | 0.23 | 0.46 | 0.14 | | | | | | | | HOA | | | | | | | | | 0.35 | 0.18 | 0.40 | | | | | | | | | XM | 0.39 | | 0.52 | | 0.42 | | 0.57 | | 0.38 | | 0.47 | | | DE | | | | | | v.; | | 0.29 | 0.56 | | | 0.38 | 0.58 | | | 0.26 | 0.48 | | | } - | 0.005 | -0.5 | VL. | ٥ | ٥ | xqs | 0.46 | | 0.55 | | 0.48 | | 0.59 | | 0.38 | | 0.46 | | | BC1 | | | | | | YQS | | ·c.46 | c.67 | | | 0.37 | ٠.61 | | | 0.30 | 0.56 | | | | | | | | | TU | 0.29 | 0.29 | 0.46 | 0.13 | 0.31 | 0.33 | 0.45 | 0.14 | 0.28 | 0.22 | 0.39 | 0.14 | | | <u> </u> | | | | | нол | 0.35 | 0.22 | 0.45 | | 0.38 | 0.38 | 0.64 | | 0.37 | 0.23 | 0.50 | | | | | | | | | хм | 0.33 | | 0.41 | | 0.40 | | 0.56 | | 0.46 | | 0.59 | | | D7 | | | | | | YM | | 0.29 | 0.44 | | | 0.44 | 0.68 | | | 0.34 | 0.62 | | | - | 0.005 | -0.5 | ՄԱ | 0.3 | 0 | xqs | 0.30 | | 0.41 | | 0.40 | | 0.50 | | 0.46 | | 0.58 | | | BCl | | | | | | YQS | | c.38 | 0.57 | | | 0.44 | 0.62 | | | 0.32 | 0.63 | | | | | | | | | TU | 0.29 | 0.29 | 0.43 | 0.15 | 0.33 | 0.37 | 0.59 | 0.12 | 0.35 | 0.27 | 0.49 | 0.17 | | | | | | | | HOV | 0.29 | 0.18 | 0.39 | | 0.38 | 0.33 | 0.58 | | 0.40 | 0.25 | 0.62 | | | | | | | | | XX | | | | | | | | | 0.42 | | 0.63 | | | D8 | | | | | | MY | | | | | | | | | | 0.31 | 0.64 | | |] - | 0.333 | ~0.5 | UL | 0.3 | 0.1 | xqs | | | | | | | | | 0.40 | | 0.53 | | | BC1 | | | | | | YQS | | | | | | | | | | 0.29 | 0.59 | | | | | | | | | TU | | | | | | | | | 0.30 | 0.24 | 0.45 | 0.16 | | | | | | | | ноч | | | | | | | | | 0.39 | 0.24 | 0.56 | | | } | | | | | | XX | | | | | | | **** | | 0.43 | | 0.55 | | | D13 | | | | | | ХИ | | | | | | | | | | 0.28 | 0.59 | | | - | 0.005 | -1 | UL | 0.3 | 0 | XQS | | | | | | | | | 0.39 | | 0.53 | | | BC1 | | | | | | YQS | | | | | | | | | | 0.29 | 0.56 | | | | | | | | | TU | | | | | | | | | 0.35 | 0.26 | 0.40 | 0.16 | | | | | | | | HOA | <u> </u> | | | <u></u> | | | | | 0.39 | 0.27 | 0.55 | | ### TABLE C-VIII (Concluded) ### (a) Five-Percent Exceedance Control-Moment Levels | Case ¹ | | | | ction | | | | | F1: | xed Ea: | se | | | | | loving | Base | | |-------------------|----------------|----|------|-------|-----|------|------------------|-----------------|------|-----------------|-----------------|-----------------|------|------------------|------|------------------|------|-----------------| | Basic | N _V | į | Viri | | r K | Sub- | | Pilot | ٨ | | | Pilot | В | | | Pilot | В | | | Conf. | | n, | Nom | ~y | ďψ | | и _с 5 | Le ₅ | Sin. | Nc ₅ | M _{c5} | Le ₅ | Sin. | N _c 5 | Heg. | L _c 5 | Sim. | Ne ₅ | | | | | | | | ХМ | | | | | | | | | 0.12 | | 0.56 | | | D14 | | | | | | YM | | | | | | | | ****** | | 0.28 | 0.52 | | | - | 0.705 | -1 | ᅂ | 0.6 | ٥ | xqs | | | | | | | | | 0.42 | | 0.57 | | | BC1 | | | | | | YQS | | | | | | | | | | 0.30 | 0.61 | | | | | | | | | TU | | | | | | | | ******* | 0.35 | 0.25 | 0.45 | 0.17 | | | | | | | | KUA | | | | | | | | | 0.39 | 0.22 | 0.56 | | # (b) $\rm M_{C5}, \ L_{C5}$ and Percent Time Yaw Control-Moment Command Exceeded Installed Limit, $\rm P_{NL}$ | Case ¹
Basis ² | n, | | Direc
Faram | eters | | Sub- | | | | xed Bas | | | | | ļ | oving l | | | |---|--|----------------|----------------|-------|----------------|------|------|--------------------------|------|---------|-----------------|--------------|--------------|-----------------|------|---------|----------------------------|-------------------| | Conf. | | N _r | Varied
Nom | 74 | áu | | | Pilot
L _{c5} | Sin! | PNL | M _{C5} | Pilot
Les | Biz: | F _{NL} | Mc5 | Nict I | 3
1 31 m ¹ 4 | P _{NI} . | | | | 一 | | H | ` | ХМ | 1-3 | } | | | 1 - | 1 37 | | I NL | 0.40 | 1 _ | 50 | 1417 | | D20 | | |] | | | YM | | | | | | | | | | 0.28 | 0.48 | | | - | | -1 | 0.10 | 0 | 0 | XQS | | | | | | | | | 30.0 | | 0.48 | | | PC1 | | |]
} | | | YQS | | | | | | | | | | 0.30 | 0.53 | | | | | | | | | TU | | <u> </u> | | | | | | | 0.30 | 0.29 | 0.45 | 13.20 | | | | | | | | HOV | | | | | | | | | 0.38 | 0.26 | 0.54 | | | · | | | | | | XM | 0.39 | | 0.56 | | 0.40 |
 | 0.39 | | 0.38 | | 0.47 | | | 151 | | | | | | ΥМ | | 0.28 | o.48 | | | | 0.34 | | | 0.27 | 0.48 | | | - | | -1 | 0.13 | 0 | 0 | xqs | 0.50 | | 0.59 | | 0.39 | | 0.38 | | | | | | | %C1 | | | | | | YQS | | | | | | 0.22 | 0.40 | | | 0.31 | 0.55 | | | | | | | | ĺ | าบ | 0.30 | 0.29 | 0.47 | 7.50 | 0.33 | | 0.31 | 1.00 | 0.28 | 0.26 | 0.39 | 6.70 | | | | | | | ĺ | HOA | 0.32 | 0.55 | 0.47 | | 0.39 | | | | 0.36 | 0.25 | 0.50 | | | | | | | | | Χ'n | | | | | | | | | (.40 | | 0.58 | | | D33 | | | | | | YN | | | | | | | | | | 0.28 | 1,50 | | | - | | -1 | 0.16 | 0 | 0 | XQS | | | | | | | | | 0.47 | - | 0.58 | | | BC1 | | | | | | YQS | | | | | | | | | | 0.29 | 0.57 | | | | | |] | | | TU | | | | | | | | | 0,34 | 0.26 | 0.44 | 1.10 | | | | | | | | HOV | | | | | | | | | 0.39 | 0.22 | 0.52 | | ^{1.} Wind similation included mean wind, $\mathbf{U}_{m} = 10$ kts. Thrust vector control available to trim longitudinal steady forces. ^{2.} Symmetrical configurations - lateral derivative has same value as corresponding long tudinal derivative. Key: XM, longitudinal reneuvering; YK, lateral maneuvering; XCD, longitudinal quick stop; YQS, lateral quick stop; TU, + 180 deg turn-over-a-spot; HOV, precision hover. ^{4.} Sim: Simultaneous control moment usage, exceedance computations performed on the function (INcl + ILcl). #### APPENDIX D # SUMMARY OF FLYING QUALITIES DATA AND PILOT COMMENTS FROM CALSPAN FILOT EVALUATIONS Flying qualities data (pilot ratings and pilot-selected control sencitivities) for the flight simulator evaluations with Calspan pilot B are summarized in Table D-I. Another Calspan pilot participated briefly in the UARL program but did not perform flying qualities investigations. Calspan pilot B evaluated both lateral and longitudinal control test cases and height control cases. Turbulence effects, control lags and delays and control-moment limits were evaluated in the longitudinal and lateral control investigation (Table D-I(a)). The interactive effects of height velocity damping and thrust-to-weight ratio were evaluated in the height control study (Table D-I(b)). Edited pilot comments from the Calspan pilot B evaluations are summarized in Table D-II. Comments for the longitudinal and lateral control test cases are shown in Table D-II(a) and those for the height control test cases are contained in D-II(b). Preceding page blank TABLE D-I FIXING QUALITIES RESULTS FROM CALSPAN PIIOT EVALUATIONS Height and Directional Parameters Contained in Table A-I Filot Comments Given in Table D-II s) Longitudinal and Lateral Control | , | | | | | | | | | |-------------------------|------------|-------------|----------------|----------------|------------------|-----------------------------|----------------------------------
--| | | ž. | 0. | 5.3 | 8.5
30.6 | 3.0 | 3.0 | 200 v | 0.00 to 4.00 to 6.00 t | | leving Bace | Lòg | 0.230 | \$2.30 | 0.3°5
0.365 | 0.365
0.365 | 0.3 ¹ .1
0.10 | 0.220
0.337
0.341 | 0.74
0.361
0.25
0.780
0.310 | | 5]; | 1.80 | 0,347 | 3.3.0
0.3.0 | 0.370 | 0.321 | 0.326
0.326 | 0.473
0.523
0.503
0.535 | | | Delay | ಕ್ಷ-೨೪ | 0 | 00 | 00 | 00 | 00 | 600 to | n 10000 | | Jæg. | Te. 78 | ٥ | 60 | 60 | \$ 9 | ဝ၁ | 0000 | 200000 | | Turbu-
lence | 010ء عدو | 3.7 | 1.7 | ٠,٦ | 2.7 | 1.7 | 2000 | 200000 | | trol | Bcn | Ħ | ៩៩ | is is | | ដដ | | 0.0%
0.0%
0.0%
0.128
0.128 | | faximum Control | Į, | 75 | ដ្ឋា | 25 | 3.2 | 7.1
141 | ដាំ១៩៩ | 1920
0.193
0.133
193
193
193
193
193
193
193
193
193 | | 185 |
 | z) | 불닭 | 17 H | ១៩ | មិត | ម្ | 0.163
0.216
0.288
UL
UL | | Complex | Paf ; "m}- | -0.81:11.85 | -0.30051.47 | 0.04.30.68 | 10.05.02.04 | -0.2tg.85 | -0.35±20.64 | .c. \$1¢11,85 | | Seal. | | -0.13 | .o.c | 3.2 | 2.5 | 3.07 | eh
er | -6.13 | | | ,e | ÿ.
•¶ | ;; | v | 7.7 | -L.2 | 3.0 | ï | | itts
ilves | | 7 | -1.1 | 0*2- | ٥ .
۲٠ | -1.7 | J*€- | ن. تا
د | | Teatile,
Terivatives | χe | -0.05 | -0.05 | Å. | 80°3 | 0.0 | ري•دي - | ž. ž | | | ,
, | 3.35 | 1.0 |)c | 9.1 | , 33 | 7.7 | ж. | | Paste | | 3.2 | \$ 2 | E S | đ. | Ŋ | Ş | ਹੈ
ਬ | | 7,3,5,5 | | 13 | भुद् | ផ្គង់ | ÞΉ | 35 | 8666 | ing a said | (b) Height Control | Height Lamping, Thrust-to-keight Fararotors Fararotors Fararotors | Zua Zus T/N Zbc FR | 7n 0 . 0 | _ | -0.35 UL 3.27 | -0.175 -0.175 1.08 8.20 | -0.35 1.02 8.00 | -0.05 1.05 | -0.175 1.05 | 52.0- | 1.10 5.44 | _ | | |---|--------------------|-------------------------------|------|---------------|-------------------------|-----------------|------------|-------------|-------|-----------|---|---| | %caplex | Fm: "my- | -5.35.30.64 | · | | -0.21:11.85 | | | | | | | | | Red. | 3 | ς;
γ | | | -0.33 | | | | | | | _ | | | φ. | 2.7- | | _ | 1.2 | | | | | | | | | . t w. | 2.Y' | 3.0 | | | 7.1. | | | | | | | | | Staulity
Derivatives | ۳, | -0.20 | | | -0.05 | | | | | | | | | | 314. | 0 | | | 6.33 | | | | - | | | | | :,384
:,384 | | 5 ² / ₂ | | | T) A | | | | | | | _ | | (Pse) | | pre 517 | £! { | 77 | 7: | Ÿ, | ٠, | ę. | į. | ្ត | ğ | 7 | ^{1.} Year that is a f for all Calepan pilot evaluations. For height central on a cross of for cases (41.-41) and a cross of the cases (41.-41) #### TABLE D-II ### PILOT COMMENTS FROM CALSFAN PILOT EVATUATIONS ### (a) Longitudinal and Leteral Control Case CAL 1801 Man = UL $L_{\rm Op}$ = UL $R_{\rm Op}$ = UL $G_{\rm Up}$ = 0.0 $G_{\rm Up}$ = 0.0 $G_{\rm Up}$ = 0.487 L_{δ_0} = 0.487 L_{δ_0} = 0.286 PR $G_{\rm Up}$ = 0.0 Control sensitivities - I did get adequate roll control; however, the consiguration is sugn that it's difficult to stop it where you want, so you have to anticipate cuite a bit. Adjusted a nativities targive enough quickness of respense so I would attempt to stop without having to enticipate as much. Then there was a comency to oscillate so I finally comprenied and accepted the sensitivities that I have now. As taxi around the square - it's very difficult to remain over the spot on the ground, primarily because I'm behind the airplane or I'm overconsrolling in attempting to maintain a rosition. It does seem that pitch response on bank angle response are quite good but the aircreft response in translation is very sluggish in both directions, both in trying to get it started and in stopping it. Once you get it started it's quite difficult to stop it with any precision at all. Ion approximate the task and that's about 13, you can do. There is a low level of pricision nere. If I concentrate very hard I con usually stay sithig to 16-it equire. Heluig heading is no problem. There is some charge in altitude, but not very much -- my set? or 8 ft. Quick-steps - Don't really have any precision, you just have to make some gretty large inputs. Transged to do it a couple of 'axes fairl,' well, but it was strictly a hit-or-miss proposition. Turning over a spot - That's a problem; the big difficulty is to stay within \$10 to 20 ft of the center of the square. Hover - The ability to relutain pictal a haven is quite poor as far as attitude and angular rates are concerned; however, it's not bou. As usual, have quite a bit of trouble laterally. Seems that I'm sliding back and forth all the time. The motion storts quite cubtly, but once it starts it is difficult to stop. Overall evaluation - The ratios objectionable features are the sluggishness in response and control of the displacements. Favorable features include the fact that height control is pretry good, heading control is no problem and there are really no oscillatory tendencies at all in any direction. With turbulence (CIS) I would say, for all practical surposes, that the aircraft is unflyable. I can raybe keep it in the cky but the overreions are very large and I get the facting I really den't have much central ever the aircraft. I didn't get a chance to de anything in the way of an inversing. All I was trying to do was to hover over a spot, and I warn't alle to do that. So I tried various gains on the cyclic both in pitch and roll and just didn't feel 15 was very good. I think it improved some when I went up to higher sensitivities, but not cufficiently that I would accept the airplane. This cut down the level or pagnitude of the excursions, out titll didn't think it was a flyable or accepta le airplane and I couldn't do the task. So then I flew it without turbulence (CL2). Fithout the turbulence I was able to do the removers to seek extent. I get the impression that, even without turbulence, there are sure external disturbances. These may be inadvertently pilet-induced. Gertainly it's a transmitted difference between turbulence in and burbalence out. With turbulence (CL3) I would have to reject the configuration completely because at some point you precably will lose it, especially if the turbulence were any higher. Low, in smooth air, it lid seem there was some lan in response to control reputs, about all axes, in spite of the fact that the height control is pretty good. I'd neve to keye the collective only a number of times. I think a was able to initiate the notion alright but precision of stabilizing velocities, etc., wasn't very good at ail: I don't think as hover capability was real good although I did manage to make some turns in both directions and root of the time stayed within the source. There seems to be quite a bit of change in attitude, ritch primarily. Tried some quick stops. I enirplane responds clussically; there seems to be a fair amount of lead required to either stor lateral motions or longitudinal motions. In turning over a spot, so real problem. stopping on a heading. There is apparently no cross-coupling between the rudder and the cyclic. Probably would have been able to land this, at least in smooth air. In repard to see many dynamics, in the higher rate maneuvers there was some cross-coupling. The major objectionable feature was the lack of precision with which I can initiate and trailers velocity and position over the surface. I did manage to do some 360's fairly reed in mover, but that's about the only thing I was able to do fairly well. Tried it with turbulence (CLC) and found it completely unacceptable, probably a 10 rating. I flow it for a couple of minutes. In ercoth air (CLC) I tried quite a few scarings and I thought that might help but it didn't. It looks like lightly darped roll nodes and I'm not sure about pitch. There were times where it almost felt like the airplane wented to go on it; own, but in any care didn't have precision of control. I had more trouble in roll than in pitch. Maneuvers not very cuccessful. Regardless of control
sensitivities, I never really solt I had good lateral control. Addn't have nearly as much trouble in pitch as in roll. Not able to establish any decent bank angle; very easy to overcontrol. I didn't like it, couldn't really stop or hover precisely. Not really able to stay within ground track limits. Quick stops - Not really very good at all; I tried some but seems like the airplane scart to take off, especially in the lateral quick stops. Turning over a spot - Didn't look real bad. It does seem that, once you get the airplane under reasonable control and not everything steaded out reasonably well, it can be held reasonably well. #### TABLE D-II(a) (Continued) It was quite a bit more effort to try to do the tack in turbulence (CIII) but I was able to do that and even hover, say, fair. I could even keep within the 7-ft square. Lot of control activity in the turbulence, however. The configuration does seem to have reasonable stability and dasping and the responses to control inputs appear to be reasonable with the particular gearings I chose. In mooth sir the response to control inputs was fair. If does still seem that there are some lags in the initial responses to control inputs. I also did a fair amount of height control power inputs. I was able to establish displacements and velocities with reasonable precision in mooth air. Revering capability was reasonably good. Could do the turns over a spot reasonably well. I really don't see anything strengly objectionable; the biggest thing probably are some lags in response to control inputs, but they are not really so bad. Could do it fairly well. Have some difficulty with bank angle, but it's probably fee. So in amouth six I would say the aircraft was pretty good. I think performance in zeroth air was satisfied tory without improvement, in turbulence the work level certainly goes up quite a bit and maybe this is just a matter of proficiency. In turbulence the pilot compensation and workload are really fairly high. Flow this in smooth air first (GIA) and 1 thought overall it was an excellent configuration. The only thing ! noticed was a tendency to bobble the airplane a little in pitch. Whether there is lightly damped pitch escillation here I don't know. Could have just been closed-loop. Muliced this particularly when I tried to make a fairly rapid atti de change. The control constituities seemed to be adequate in smooth air. I then flew short time in turbulence (CL9) and felt the need to increase the control septitivity to be able to offset some of the guets. Not really sure which was better; without the higher rensitivity it seemed that I just didn't have sufficient control to keep the aircraft excursions anall enough. On the other hand, with the higher mearings it lid seem that I got into more high-frequency PIC's. Wasn't sure which to take, but it did seem that this gearing I here in turbulence (CLO) is better suited for precision control in doing the hover. The following commenture in smooth air. Response to control input second to be reasonable, although there were times when I felt it was a little sluggish, but I did seem to be able to stop the thing without needing a lot of lead, so maybe the dapp may ir pretty good. The controllability of position and velocity seemed reasonable. Could hover very well. Culd de turns over a spot very well. Very rarely went outside the 7-ft square. Could do the quick stops quite well although it did seem that I couldn't really generate high enough velocities with the control power I had. In other words, for the quick stop I would have expected to get a little higher speed going and nake of much quicker, but this may be a function of the gearing I chose or it may just be a faction of the dynamics of the aircraft. In any event, I was able to do all of the tanks with what I considered to be pretty good precision. The only possible objectional e teature is that the response, maybe initial response, to control inputs could be a little slow and possibly control power maybe was a little low. This may be my fault, going with the scaring I had. I den't really see that there is anything object/couble about it. In smooth air I certainly would rate it satirfactory without improvement for the tack I was some, with only negligible deficiencies or some mildly unpleasant deficiencies. In turbutence, I had quite a sit of trouble. The performance in turbulence certainly was not what I would consider very good so that the airclane would so into the deficiency-varrant-lagrougent category. Case CL20 LeV Ne_m "The Le_m WI Ne_m UL $$\sigma_{N_Z}$$ σ_{V_Z} 0 N_{δ_C} 0.17% L_{δ_A} 0.773 18 3 No corrected due to defective recording. Fig. CLII 3th $$n_{\rm c_{\rm in}}$$ BL $L_{\rm c_{\rm in}}$ BL $N_{\rm c_{\rm in}}$ Bh $\sigma_{\rm c_{\rm in}}$ if didn't feel any great need to try a range of control semitivities, so I left them where they were initially. Air taxi around the square - Response to control inputs secred a little sluggish about all acc., but was alle to stabilize and hold decired velocities. However, with these gearings the rates were generally rather small for rairly large inputs, but i felt confectable with it. Some lag an "dilation of tre motion. Were able to stop the motion rather rapidly but it did take sairly large attitude changes to le it. Could actually overcontrol quite a bit and still be able to stop the motion pretty close to where I wanted it. Was able to come to a hover at the corners fairly well. Attitude changes required were fairly large, but mainly technic I would wait quite awhile vefore I would try to step it. Ability to remain within ground track was pretty pood. Was able to hold heading well. Control deflections were serv often on the fairly large side. Ability to hold heading wan't had at all, control motions were fairly large. Turn over a smot - I thought my performance was very good as far as making turns and hevering; height control as no particular protice. Could initiate and maintain the turn rate. It seems to me it's attrictly mechanical as not need to me it's attrictly mechanical as not need to me it's not each of your rate and that's it. You can practiculally take to "fe t off the rudder and it will just stay there, and when you get within 5 or 10 degs of where you want to stop, set put in the opposite rudder. Decan't seem to be any particular trouble as I can stop at a presclected he say very sell. No wing tilt control used. Certainly I could establish hover quite well. Centrol was adequate for vertical 1 and to "cature is that I can do all the mneuvers with good precision. ### TABLE D-II(a) (Continued) Case Ch12 BCh $M_{\rm Cm} = UL$ $L_{\rm Cm} = UL$ $R_{\rm Cm} = UL$ $\sigma_{\rm Ug} = \bar{\sigma_{\rm Vg}} = 0$ $\tau_{\rm e} = \tau_{\rm a} = 0.6$ $M_{\rm \delta_c} = 0.509$ $L_{\rm \delta_a} = 0.237$ PR = 5 Cnce you establish a velocity while maneuvering; it can be held reasonably well. The problem was in-initiating it in such a way that the pilot didn't oscillate or develop a PIO. Ability to step precisely was a little problem recause of the dynamics and the necessity for the pilot to reduce his gains so he didn't get into a PIO. I think there are times when the attitude changes are rather large; especially in pitch, but in fact the attitude changes are really fairly small. Would rate the ability to remain within ground track limits, to hold headings and to hold altitude as fair. Seemed like the altitude control was not quite as precise as desired, mainly because I was concentrating more on attitude inputs because of this tendency to get into a PIO. Did seem that I was may ing some fairly large control deflections in pitch and roll. To get large ... wh angle (10 deg max) rapidly and t' in try to stop it resulted in getting behind the oscillation. That part of the problem was strictly pilot-induced. For small corrections, didn't have that trouble at all. Really noticed this only in the large inputs and when I required lerge, high rates. Don't think I was able to accomplish what you might consider a quick step cancuver. If I tried I just felt that I didn't know whether I could stop the notion, because I got into a pilot oscillation. Don't think there were any excessive attitude changes; was just cautious about getting the aircraft to move laterally and maintain reasonable rates to I could avoid oscillation. Applity to hold heading and altitude was somewhat degraded, I think mainly because I was more worried about stopping it. Turning over a grot didn't provide much trouble. Would be drifting shittle but could make corrections. Only time I felt in trouble was when attitudo rates got high. The objectionable fracure as that large attitude changes had to be made slowly to avoid getting into an overcontrol situation and PIO. However, for small amplitudes and small corrections, and when things were far y well stabilized, the precision - control wasn't bad at all. Special piloting technique is to make control inputs so as to stay away from escillatory tendency. Case CL13 BC4 Mcm. * UL Lcm * UL Ncm * UL $\sigma_{ug} = \sigma_{Vg} = 0$ de * $\omega_{a} = 0.1$ M $\delta_{e} = 0.355$ L $\delta_{a} = 0.341$ FR * 2.5 Tried higher leteral and longitudinal sensitivities and rapid, large emplitude maneavers. With the higher sensitivities I could do a pretty good job although I seemed to be a little more assillatory, so I decided to reduce the gains to roughly the initial values. Air tard around the square - Response to control inputs seems a little sluggish. however, it's not really difficult to stabilize and hold desired velocities even though a little on the slow stile. Ability to stop precisely not too bad. Secred to be a relatively easy thing to stop precisely. Attitude changes may be a little on the high side. Ability to remain within ground true limits was quite gool. Could hold heading and tude quite-well. Control deflections at times seemed to be on the large side with this gearing. For Ray
le, to get 5 kg of bank angle requires almost full throw, although I'm not hitting the steps. Didn's use any trim. Quick stope . With this gear ratio you don't really pick up very large velocities. After making an input it takes a little while for the velocity to pick up. To determine how much to lead it to ctop didn't seem to be a very difficult thing. Ability to hold heading and altitude was quite good. Control motions required are substantial but ranageable. Ability to haver over a spot was very good. Height control no problem, Fitch and roll control quite good. Ability to initiate and hold turn rates as problem and stopping on a precelected heading no problem. I was ver, happy with the precision of the hover, precision of the turns, atility to stop the motions; even though there are some lags in the system they were still quite noticeable. Control activity for vertical landing is probably tairly normal for a VSTOL airplane. The tasic good feature is that the performunce is quite good without excessive workload. No particular pileting techniques. . think it's acceptable and catisfactory, probably doesn't need any improvements unless you are looking for a highly responsive aircraft. Once CLL BC1 $M_{\rm cm} = 0.308$ $L_{\rm cm} = 5.125$ $M_{\rm cm} = 0.040$ $\sigma_{\rm tig} = \sigma_{\rm Vg} = 0$ $M_{\rm ch} = 0.005$ $L_{\rm cm} = 0.135$ PR = 10 There is no question that this is an unacceptable configuration. I tried a range of longitudinal control consistivities because I got into a longitudinal FIO which was so large and I was so far behind it that I in effect took control. Increased the sensitivity; this seemed to improve things sensewhat as long as I flew the arritance very tightly and with small amplitude displacements. Could be the pitch rate and attitude both upper in here to get me into trouble. If I got the aircraft moving forward protty fast in trying to quick stop, it required very large vitch attitude to stop it. This is when I got into what appeared to be a very large amplitude situation where, in effect, I lost control. Did thus about three or four times and went back to initial conditions. One can control the aircraft and do the maneuver task but you have to do it with small amplicudes and flor rater in pitch attitude. Once you got into large amplitude displacements and high pitch rates, then, in effect, control was lost. Would have to rate this an unacceptable configuration. It for like quitrol power was way fown and so I just early accept the airplane. Case CLLS BC1 $M_{Cm} = 0.216$ $L_{Cm} = 0.248$ $M_{Cm} = 0.096$ M_{K_0} and L_{K_0} Unknown PR = 8 A pretty lousy configuration; not nearly as ead as the one I just had (Chi4), but has similar characteristics, although the biggest problem with this one appears to be in controlling lengitudinal position. Don't seem to have much control of forward and aft valocities or of being able to stop it with any degree of precision. Lateral control is not very good, but does seem to be a little better then langitudinal. Initial response to control inputs seems to be slow; however, once you got it started you do seem to have dividually establishing a particular rate. It does seem to take a large pitch attitude change to get it nowing and to stop it. Don't seem to have any idea when to make control reversals to scop it precipally. Pon't think my ground track was very good in any race. Always had some heading problems here because i'm very often inadvertently pitting radder in when I'm trying to turn or bank. Where it stopped in the quick stops was unpredictable. Can't stop it where I wan, I it. Then trying to hold it was also a problem. Turning over a spot was quite regged, errors were on the order of ith or of fiftem the center. Tried flying it very tightly but just wasn't really able to accomplish it. Perforance ## TABLE D-II(a) (Continued) THE PROPERTY OF O war quite poor. Trains to maintain a hover resulted in position crivers on the order of \$10 to 15 ft. Not five I have adequate central for vertical landing. I suppose you might have some velocity, and just, go cheed and land it. But trying to lit a spot is quite difficult. Lots of control activity. Cojectionable restures are the fact just den't reem to know what kind of inputs to fine is stop motions or initiate motions of the magnitude and the precision desired. No real special pliciting techniques creeps that you try to second-gues or anticipate the inputs. Essically 't's a very poor configuration from the standpoint of precision of control and performance. case cale box No. + 0.216 La + 0.249 No. = 0.096 Ong * 21g = 0 No. + 0.460 Lb = 0.361 PR = 3.5 I tried everal control sensitivities. At the higher values, got into some PTO problems, and some decentrol problems, so I sended them a little. There is some lag in the response to centrol imputs and it was take a fair around of attitude change to get things rowing, but it's not excessive. Can maintain valouities once I we established them as long as they are not too high. I do seem to run into some problems if I increase my gain and make In yer inputs; in other words, if the rates are fairly high and at takes large amplitude attitude changes to coop the motion. Then I get into some over-entrol and obsiliatory tendencies. For low and moderately low yelecties I constrop tairly well on the corners. Performance on ground track year't too bad. Holding heading was CX. Quick stops. Wouldn't say these are really good quick stops. The main problem is that I relate the quick stop sith high rate well and large amplitude pitch or bank angles, where I get into trouble. So I've been a little healthing to get it rains too fast. I aid get into score FIO laterally one time when I rade a fairly rapid which cates. Thus over a sp. t. That actually went very well as long as I mad a good stalled rate of turn and not too fast. Was able to saw just arount in the center of the spot may I the time. At the alghor rates I went a little outside the square, mybe about 5 it i are. I was fairly happy with the hover mad turns, fairly happy with the low rates, but haven a moderate arount of concentration. I think I did induce some some of lawerd confillation at times, especially when I folt had to make some problems. Case TLIY BC1 $M_{\rm Sm} \approx 0.70^{\circ}$ $L_{\rm Sm} \approx 0.330$ $L_{\rm Sm} \approx 0.128$ $m_{\rm kg}$ $m_{\rm kg} = 0.450$ $M_{\rm kg} \approx 0.447$ $L_{\rm Sm} \approx 0.250$ FR = 4 Didn't do too much on the gearings. I second to be also to 119 the airpiane pretty well so I only enanged-the longitudinal sensitivity a little. Response to control inputs secar to be pretty fair. Van able to initiate motions out it's not as responsive as I would like it. As long as I raintain and y to moderately low values, there is an any problem in maintaining desired valorities. There is a lag in the response in the and y to control inputs, but the attitude changes required to get the airplane to move in the x and y direction mean to be only moderate. Firsh attitude changes required to get the airplane to move in the x and y direction mean to be only moderate. For have smaller thenges required but it's not really too bad. Precision to stay over ground trackwar fair also. Ill take some effort, int performance was not too bad. Tolding heading was not a problem and elittude control was cool and entrol deflections were mederate. Quick stops - Den't third it's as good at I would like to see it but it's really not too bad siber. Does take pretty large attitude changes to perform a butch stop. Turn over a spet - has fair to good; at least I didn't have to work too haid and I could rectably stop within about 10 ft of the center of the square. No problems 'authating and stopping the turn. Again I did not push the rate. In the hower the performance was pretty good. Did have to work fairly hard but not excessively have to a reasonable jet, alw unit you're aiwwe maked inputs. Certainly adequate for certical landing and control actuait, would be correleved as ecderate to rederately high. Some clight cross-coupling between lateral and longitudinal rodes. I mean the only objectionable feature I could see rate the sect of responsiveness of the airplane. In the u and y velocities, thilty to trop precisely, and the small leg in response of the airplane. Problems to be actually and the small leg in response of the airplane. Problems to be actual public congenitation. care only but you be ton up up the non- up only 0 Mag 0.447 the 20.280 the 5 Irica coveral calmet of control sensitivity. Increased the sensitivity and didn't particularly like it accours I of inte sor fort of plut-induced scalilation, rainly in roll. There is at'll some lag in the response in the displacements and velocities of the aircraft. This was a sort of moderately difficult configuration to fly. Wes able to do some things with protty good precision, out it did take a lot of concentration. It did have a touconcy to log the central input., you had to anticipate storping the motion of the aircraft laterally and longitudinally. fitch respon e. roll response, yas response all pretty good. Responsiveness in the initiation of motion and the grouping of the motion in the x and y directions was affected by lags in the system. Was difficult to stabilize and hold desired velocities. Then to try to stop it at any precise point was also scownat difficult. I was able to hover great, but 't did the quite a bit of concentration. In doing so, there were some excursions in height but hat wes easily compensated with collective inputs. He ght control was quite adequate; good despins in height. There is sort of a cornserve effect when you start turning, dependant on the rate at which you turn. There is a terdency to arop down in altitude. Sure there is a loss of lift as it does require some noticeable power input to maintain altitude. Ned a tendency to Jose altitude in the turn over a spot. Also second to be power required when I rule
seen repid lateral and longitudinal displacements. As far as precision around the ground track, x and y was sort of rough, especially A the y direction. I was either too far shead or too far behing the spot. Quick stops - It's sort of a hit-or-miss proposition, although I managed to stop at the spot fairly well, but trying to hold it there was not lasy. There did seem to be some fairly large control motions required. Turning over a spot - 1 think the ability to stay over the spot was only fair, I was always raking corrections. Widn't rake very fast turns. With these rederate turn rater I was able to stop it within about 15 deg of desired heading. Mover precision was fair, but I had to work fairly hard at it. Certainly adequate for vertical landing and control activity was almost constant. There were some x cross-coupling effects between longitudinal motions and lateral or bank angles. I slways had that problem. I guess the most objectionable feature is the fact that you do have to anticipate ctopping of x and y motic , and pitch attitude changes. Fitch attitude changes seen to be fairly large to raneuver. Overall, it does require moderate to considerable pilot compensation to do most of the tasks, especially the quick stops. # TABLE D-II(a) (Continued) case case set Mc vil Lc = vil. Non = vil $\sigma_{\rm lig} = c_{\rm lig} = 0.500$ LS = 0.310 FR = 7 This was not a very good configuration. I played around a little with the goarings, but the final values are essentially like the previous configuration. Even for relatively small emplitude displacements and rates, I just didn't think the precision of control and the precision of the task were adequate. Don't believe I ever felt I completely lost control, but there were times when very large excursion were obvious. Quick stops -I could stop it, but then I coulde't maintain position at the stopping point. Then trying to bring it back to hover was quite a protien. Could receasing stop the turn care heading within about 15 deg. Precision of rever was rair, but it did take a pretty fair amount of concentration. I would probably be able to land, although I'd have to be quite careful with it. Height control, however, didn't seem to be able to land, although there was one maneuver where I think I left the altitude go all the way down to 20 ft. I guess the primary objection is the initiation of translational motion is sluggish and once you get the motion started it's difficult to stop It. Pitch control is certainly quite adequate. Lateral control seemed a little sluggish. The attitudes required to stop the airplane care you get to more in a pitch or lateral control along the axes in translation and also the large displacements in bank angle and pitch attitude that are required to get the airplane to move and stop. # TABLE & I(b) (Continued) ### (b) Height Control Case Cill Zug * Zug = 0 T/W = UI, Zec * 3.20 PR = 10 injury task was to evaluate ability to maintain height control while doing basic tasks. It's quite chviour you've absolutely no stability, no damping in height control, so the pilot starts off chasing altitude. The task is very, very severe. I was overcontrolling very, very much with the collective. I tried it again much nore carefully and was actually able to get off the ground and establish about 50 ft and had pretty good control of altitude for a thort time, raybe on the order of a minute or two, and was also able to hover over the spot at the same time fairly well, but was spending much time controlling altitude. So everything looked goods then I tried to start the naneuver. As soon as I did this, the altitude changed a little, so I tried to chase it with larger and larger collective injuts. Was going down to about ho ft and up to about 30 or 90 ft. That's pretty poor. It was obvious that practically all my time would have to be devoted to height control and there would be very little time to do anything else with the aircraft. On the basis of height control alone, I would have to rate this configuration completely unacceptable. Control will be lost in some portion of required operation. Case GP $2w_0 = 2w_0 = -0.25$ T/W = UL $2\delta_0 = 3.20$ PR = 5 Required a fair amount of monitoring of height control. The best I could do was to maintain altitude about \$20 to \$10 fs, but this took a fair amount of effort. I did all of the maneuvers. Didn't really think that these maneuvers were too bad. Some degrading night have occurred in performance due to time spent monitoring height control. Always shooting for \$5 ft, but thit time I doubled that on the average to \$10 ft. Air taxi around the square response to controls really warn't too bad. Was able to initiate motion in each direction. General comments - Essentially, I had a fair exount of monitoring on height control with rather large excursions. Say as much as \$20 ft high and about 15 ft low from the nominal 50 ft that I'm shooting for. On the average, however, height control was about \$10 ft. Required reasonable amount of monitoring. Didn't choose any control sensitivity, Just accepted what was here as being reasonable. Could do all the maneuvers reasonably well. However, during the more rapid and larger amplitude maneuvers I had to monitor the height a little more carefully because it would tend to either climb or descend as I rade these large amplitude inputs. Most objectionable feature would be the height control; I would certainly like to have it be better. Favorable feature, I think, was the fact that, in spite of height control, I was still able to de-all-maneuvers reasonably well. Case TH3 $Z_{M_S} = Z_{M_S} = -0.35$ T/W = UL $Z_{OC} = 3.20$ PR = 3.5 Control sensitivity - Finally chose this one, which is a little lower gain than would have really liked from a standpoint of initial response. With higher sensitivities, got into other little problems like a tendency to overcont of some, so I finally backed off. Taxi around the square response to inputs was fair. Ability to stabilize and hold desired velocities was fair. Could step and come to a hover at the corners reasonably well, although again it takes fairly large and rapid inputs to stop. It does take fairly large pitch and roll attitudes; the bank angles are usually less than 7 der and in pitch less than 9 der. However, was able to maintain ground track quite well and no problem in holding heading lecause you just keep your feet off the rudders in effect, and the friction holds it once you establish that you have to rate of turn. Altitude control - Spent come time on it; could maintain altitude if I wanted to within 15 ft for normal maneuvering. Not true when I went into large amplitude, very rapid or at least attempted to make very rapid inputs to establish higher rates. Here height central problem become a little more obvious. Quick stops - Could-stop quickly but, considering that rates are fairly low, the attitude charges appeared to be fairly high. So attitude central deem t seem to be much of a problem; height control a little bit of a problem, definitely noticeable that you do have to spend come time on it. Can initiate and hold turn rates without problem; can stop on prescleeted heading even at very high rates. Didn't use any of the wing tilt control. Precision hover - Vertical landing - Was able to establish and maintain precise hover quite well, a little skidderich but not really too bad; could generally stay well within the 7-ft square. The dynamics of one axis did not affect the evaluation of another. Everall evaluation - Somewhat electionable feature was that you have to look at the height control, but if really wasn't that big a feature. Was reasonably setisfied that I could meet my criterion of 25 ft. but to do that it requires maybe a little more time and cross reference than is desirable. Favorable features - The fact that I can do all the maneuvers with resenable precision in a fairly good vay. No special piloting technique. Case CHA $C_{N_0} = C_{N_0} = -0.175$ T/h = 1.00 $2\delta_0 = 2.20$ PR = 3.5 Control sensitivities - Added a little rensitivity, it seemed to be a little better. I would say senerally this was a fair configuration. Air text - The precision of control is still not really at sood at I would like it. The small censitivity change helped some. Still get the feeling there are appreciable lags from collective input and in stopping the rates of descent or rates of click I can find a fairly well clabilized altitude with some effort. It takes several power inputs and cross-checking to twen the display and altimeter to find it. After a while you must of nechanically put the power in and get - rater of descent. To set the rates of descent under control, you make a fairly larse input and then hold it for a second or two and take part of it out again and then cross-check the altimeter and display. It recend to no that maybe 2 th/sec is shout as high as I would like to see or like to go with this thing. One this I had a larry high rate of descent going and got down to about If for on the altimeter. Was wendering whether I would be able to stop the rate of descent before touching down. Touchdow, is shout 9 ft. I still think there is expectation hers. It's probably a combination of limited thrust available plus accordances despin, and artificial damping. I can't differentiate; it's a commantion, I think. As far as height control is concerned, you called do a fair job of flying the airplane. You can get edequate performance; is it satisfactory without improvement? Maybe you have some rederate rillot compensations to get the proper power setting, so frequency of collective input is ambe a little higher than you would like. # TABLE D-TI(b) (Continued) Case GIF $Z_{V_0} \ge 0$ $Z_{V_0} \ge -0.35$ $T/V \ge 1.02$ $Z_{\delta_C} \cdot \beta.00$ The hover performance was reasonable. Tried quite a few control constitutions. I was having some lage in height control response to collective which I could improve by increasing the
constituty. I had a tendency to then overcontrol, so I went back toward the lower sensitivity. I wasn't too happy with the precision of height control. Had to spend a fair amount of time at it and alreed invariably when I did I had trouble trying to maintain my position over the spot. However, it was not really that horrendons. It was one of those configurations that, if the rates of change in height wore kept to a low level, I was able to establish a steady-state height reasonably well, but again with quite a number of collective inputs. At the higher rates, did overcontrol quite a bit. When I reduced rates to fairly low levels, maybe a half-foot per second or semething in that order, it gets reasonable as far as precision, with some of our you maybe can establish a hover height about 15 ft. It's certainly controllable. I can get adequate perform nee with tolerable workload. I would think you should improve this some; I wasn't too happy with the precision of control only because it took quite a bit of effort, a lot of collective inputs to finally establish a steady-state hover height. I would probably think it's at least a moderate compensation required. I'm not really sure whether I ran out of thrust. Had the feeling that possibly at the higher rates it took a large amount of collective to stop the axet of sink. Case CH6 $T_{W_0} = Z_{W_0} = -0.05$ T/W = 1.05 $Z_{\partial_C} = 3.20$ IR - 6 Selection of the gening was predicated primarily on reducing overcontrol tendencies. Ended up I think with the minimum gearing available. I had gone up fairly high with it; however, there is a very strong tendency to overcontrol, so I was going up and down like a yo-yo tor a while. I was spending a fair amount of time on the height control when I was trying to be precise with it; that deteriorated the performance on the X-Y plane. The overall impression is that it is not a very good configuration. I suspect that it's a damping problem primarily, but I couldn't care less whether it is damping or the fact; that I may have lags in the power application, or that there is a lack of excess thrust available. The end recult is the case. The precision of height control is just not there. I could probably land it as long as I can Feet the rates down. Here to work pretty hard, though, to establish exactly 20 ft or exactly 10 ft within; say, 20 ft; that's a fairly difficult task. It does warrant improvement. It has very objectionable but tolerable deficiencies. Adequate performance requires extensive pilot expensation. Case CH7 $Z_{W_{0}} = Z_{W_{0}} = -0.175$ 7/M = 1.05 $Z_{\delta_{0}} = 1.51$ IR = 5.0 I didn't change the sensitivities on collective, just accepted what I had, rainly because it seemed adequate. I did a little better in hover, but I'm still having tough time flying longitudinal and lateral modes so I concentrated more on the hover in evaluating the height control. It's a matter of rates, i think. If I keep the rates reasonably low, I have seet precision. If I try to speed up the receptage, I'm way ochind the airplane in trying to recever it. I think the objectionable features are the lead time required in stopping the notion once you get it moving, the lag in getting some noticeable movement when you make the input and the fact that the precision of central in all axes was rather poor. If I set up high rates of descent and high rates of climb, then the precision just isn't there. You get an overchoot of at least 10 ft or nors in the climb direction. I'm a little rate hesitant to allow it to drop below 20 't so I tend to rake sharper, faster, larger inputs when the rate of descent is fairly high and 'm approaching 20 ft. It's like bang-bang control, you just put it in and say take some of it out because you know you probably have overcentrolled. Think it is controllable. Adequate performance with a tolerable workload? Not if you're talking about the verall tark. Case QPS $T_{M_B} = T_{M_S} = -0.05$ T/U = 1.05 $T_{\delta_C} = 1.51$ PR = 3 It is still not very good, but I managed to hover at times almost within the square, which is profly rood. The same things bother me in longitudinal and lateral control: the lags, the turbulence, possibly the rearing is involved in there also. On the precision of vertical control, I was able to go down to 20 ft and hold it there while I attempted to do some managers, went back up to 10 ft and hit it fairly well. For long periods of time the height control required no attention. Also attempted some high rates of descent and clime. The time that I have to concentrate on the height control is fairly minimal. Precision of height control was pretty , and and fuct that you can pretty much set the collective and the height attays fairly close to where you put it, certainly within the 5 ft; that's pretty good. It seemed that there was always somewhat of a lag, but I think that's probably built into the altimater. Fossibly some of this huntims for the proper collective position may be caused by that lag in the altimater. Only minor or minimal pilot compensation required. Case CH9 $Z_{M_{R}} \sim Z_{M_{S}} \approx -0.05$ $T/W \approx 1.10$ $Z_{\delta_{C}} \approx 5.5 M_{\odot}$ FR = 7.5 I played around with the collective sensitivity quite a bit and was not able to find anything I liked. As I increased the sensitivity, I overcontrolled very badly. I had started out with the sensitivity to the minimum position on the lever and want up just a little, but that have me all kinds of trouble. I picked something halfway between. I was still having troubles so I finally settled on having minimum sensitivity and that still gave me the same kinds of problems I had on the previous configuration (Gill) except more accentuated. To get the thing moving it seems to take quite a bit of thrust; once you get it moving, though, to stop it takes quite a bit of collective change so I suspect we have some degradation in the height damping, plus the fact that possibly we have low excess thrust available for height control. End result is that performance on the tasks, lengitudinal and lateral, was quite bad. Didn't even try the lateral displacements; I was having enough trouble with pitch. ## TABLE D-II(b) (Concluded) Used a good portion of time just trying to keep the airplane at proper altitude or at least trying to stay close to the 20 ft or 40 ft altitude. I was overshooting at least 10 ft. Have a tendency to fly tighter when I'm going down than when I'm going up. Main objection was that I did not have precision of height control. I think there were times when I did manage to have the power lever just about right but then every time you maneuver the airplane to some extent you do have quite a bit of activity with the collective. Case CH10 $Z_{W_B} \approx Z_{W_D} = -0.125$ T/W = 1.10 $Z_{\delta_C} \approx 1.51$ PR = 5 The initial control sensitivity on the collective was a little high and I overcontrolled very badly, so I cut the sensitivity down some. Was having rore problems with hover than anything else on this configuration. Seems to be substantial lead required both in pitch and roll but it's more obvious in the pitch axis. The dynamics are also a problem. I had to make reasonable number of collective inputs to maintain 40 ft. However, it seemed to be a reasonable task. On the other hand, when I started to make climbs and descents to about 20 ft and back up to 40 ft, still had a tendency to overcontrol with the collective because there seemed to be a lack of thrust or there was a lag in the response of the thrust; either way you would get the same effect. Overall performance of the tasks was quite poor, especially the hover; I really had trouble with that. As long as I did things at reasonably low rates, I could manage to do the task. If I fried to push the airplane and force it to respond at higher rates, then everything seemed to go to pot. I don't really think I could do a quick stop with this thing too well. I didn't try any turns over the spot. Precision of hover, I thought, was quite poor and I had difficulty in establishing reasonable rates of descent and climbs so I could stop the height exactly where I wanted it. I think it was probably adequate for vertical landing as far as height control was concerned, but I'm not too sure about being able to hit a upot with any degree of precision. Control activity was quite large; I was continuously maxing inputs. Overall, there wasn't anything I particularly liked about it, but I thinght it was flyable with a fairly large arount of effort. It takes quite a bit of concentration. Don't have the feeling I have very precise control of the aircraft; however, I managed to keep reasonable control, It's just concentrating on height control that's a problem. By using low rates for take-off and changing altitude by 20 ft from 40 ft to 70 ft and back to 40 ft, did seem to have reasonable precision within about 1 or 7 ft. However, I did do a couple of maneuvers where I increased the rates fairly high and did have some overshoot problems. Got the impression that it was because I needed more collective displacement than I would normally like to use; it secred I was using quite a bit of power. The excess power available is not as much at I would like. I don't think it was associated with dasping per se because generally I could stabilize pretty well at 40 ft and 20 ft with just a moment of huncing. Objectionable feature - I think it was just at the higher rates; too much collective displacement was required. Favorable features were that, by keeping the rates reasonably slow, I was able to have pretty precise control of altitude. He special piloting techniques except that, because of lags in the lateral and longitudinal dynamics, you have to lead the power application if your rates of descent or rate of climb get too high. It's hard to say exactly what those rates are, but if you're going to change 20 ft in more than about 30 sec, then you may get into some power application
problems. I suspect it was probably lack of sufficient excess thrust available for control. #### APPENDIX E # CONTROL-MOMENT EXCEEDANCE PLOTS FOR THE MANEUVERING SUBTASK Pitch, roll, yaw and height control power exceedance data computed for a range of reference moment levels are contained in this Appendix. Initially, exceedance plots are present for pitch, roll and combined pitch and roll control moment data measured during the maneuvering subtask. The effects of turbulence intensity, aircraft speed stability and drag parameter, level of aircraft pitch and roll dynamics, control lags, rate and control coupling, and independent thrust-vector control can be seen in these exceedance data. The change in thrust-usage exceedance values with height velocity damping are presented next, and the final figure in this Appendix contains the yaw control-moment-usage exceedance results. In general, the effects of the different parameters examined on control-power usage, as defined by the exceedance data in this Appendix, are consistent with the effects noted (for the maneuvering subtask) by comparing the 5-percent exceedance levels. Effect of Turbulence on Exceedance Results for a V/STOL Configuration with Small Kesponse to Turbulence FIGURE E-1. FIGURE E-2. Effect of Turbulence on Exceedance Results for a V/STOL Configuration with Large Response to Turbulence المرياح الموروطية والمراجع والمراجع في وهو ويوسط المراجع والمراجع المراجع والمراجع والمراجع والمراجع في الأراج والمراجع ووطيعه والمراجع والمراجع في وهو ويوسط والمراجع Contraction of the production Exceedance Results Showing the Effect of Aircraft Speed-Stability Farameters FIGURE E-3. Different Drag Parameters 211 Exceedance Data for Three V/STOL Configurations Exhibiting the Three MIL-F-83300 Levels of Flying Qualities FIGURE E-5. FIGURE E-6. Effects of Control Lags on Exceedance Results for a Configuration with Moderate Response to Turbulence 23.4 Control. 215 | LEVEL OF ZWT | 0 | 0.25 | -0.50 | |---------------------------------|---|------|-----------| | SYMBOL | 0 | | Δ | | ZwT = Zwa + Zw. WHERE Zws = Zws | | | T/W >1.15 | FIGURE E-10. Yaw Control-Moment Usage Exceedance Results #### APPENDIX F #### ADDITIONAL DETAILS OF THE UARL FLIGHT SIMULATION This Appendix is a supplement to the description of the UARL flight simulation contained in this report (Section II.B). Details of the equations used to represent V/STOL aircraft motion in hovering and low-speed flight are discussed initially, here. The characteristics of the flight simulator controls are detailed next and the motion washout logic is described in the final section of this Appendix. ## A. Equations of Motion The general form of the six-degree-of-freedom perturbation equations of motion for V/STOL hovering and low-speed flight are given in Eq. (F-1). $$\begin{array}{l} M_{\mathrm{U}}\mathrm{U} + M_{\theta}\,\theta + M_{\mathrm{Q}}\mathrm{Q} - \dot{\mathrm{Q}} = -M_{\delta_{\mathrm{e}}}\delta_{\mathrm{e}} - M_{\mathrm{U}}\,\left(\mathrm{u}_{\mathrm{g}} + \mathrm{U}_{\mathrm{m}}\,\cos\psi\right) \\ L_{\mathrm{V}}\mathrm{V} + L_{\dot{\phi}}\,\phi + L_{\dot{p}}\mathrm{p} - \dot{\mathrm{p}} = -L_{\delta_{\mathrm{Q}}}\delta_{\mathrm{g}} - L_{\mathrm{V}}\,\left(\mathrm{v}_{\mathrm{g}} - \mathrm{U}_{\mathrm{m}}\,\sin\psi\right) \\ N_{\mathrm{V}}\mathrm{V} + N_{\mathrm{r}}\mathrm{r} - \mathrm{r} = -N_{\delta_{\mathrm{r}}}\delta_{\mathrm{r}} - N_{\mathrm{V}}\,\left(\mathrm{v}_{\mathrm{g}} - \mathrm{U}_{\mathrm{m}}\,\sin\psi\right) \\ X_{\mathrm{U}}\mathrm{U} - \mathrm{q}\mathrm{W} + \mathrm{r}\mathrm{V} - \mathrm{g}\,\left(\sin\theta + \sin\gamma\right) - \dot{\mathrm{u}} = -X_{\mathrm{U}}\,\left(\mathrm{u}_{\mathrm{g}} + \mathrm{U}_{\mathrm{m}}\,\cos\psi\right) - X_{\delta_{\mathrm{e}}}\delta_{\mathrm{e}} \\ Y_{\mathrm{V}}\mathrm{V} - \mathrm{r}\mathrm{u} + \mathrm{p}\mathrm{W} + \mathrm{g}\,\sin\phi\cos\left(\theta + \gamma\right) - \dot{\mathrm{v}} = -Y_{\mathrm{V}}\,\left(\mathrm{v}_{\mathrm{g}} - \mathrm{U}_{\mathrm{m}}\,\sin\psi\right) - Y_{\delta_{\mathrm{R}}}\delta_{\mathrm{e}} \\ Z_{\mathrm{W}}\mathrm{W} - \mathrm{p}\mathrm{V} + \mathrm{q}\mathrm{u} + \mathrm{g}\left(\mathrm{L} - \cos\phi\cos\theta - \cos\psi\cos\gamma\right) - \dot{\mathrm{w}} = -Z_{\delta_{\mathrm{C}}}\delta_{\mathrm{C}} \\ \dot{\gamma} = 0.087 \,\mathrm{TS} \\ \dot{\theta} = \mathrm{q}\,\cos\phi - \mathrm{r}\,\sin\phi \\ \dot{\phi} = \mathrm{p} + \mathrm{q}\,\sin\phi\tan\theta + \mathrm{r}\,\cos\phi\tan\theta \\ \dot{\psi} = \left(\mathrm{q}\,\sin\phi + \mathrm{r}\,\cos\phi\right)\,\sec\theta \end{array} \right. \tag{F-1}$$ The various terms and symbols are described in the List of Symbols. The equations are for a body axis coordinate system and have been normalized with aircraft mass and moments of inertia. Stability derivatives on the left side of the equations describe the aerodynamic, propulsive and stability augmentation forces and moments. Terms on the right side describe the forces and moments induced by control inputs, the simulated turbulence and the mean wind. With the exception of $N_{\rm V}$, the derivatives which couple motion between axes have generally been assumed to be negligible. However, # Preceding page blank pitch and roll rate coupling and control coupling were examined in one of the longitudinal and lateral control studies (Sections II.A.l.f. and III.A.5.). For this investigation the terms $M_{\rm p}$ and $L_{\rm q}$ were added to the left side of the pitch and roll moment equations, respectively, and the terms $M_{\rm Sa}$ and $L_{\rm Se}$ were added to the right side of these respective equations. Also, it should be noted that the mean wind, $U_{\rm m}$, was from 000 degrees true and it therefore affected the lateral and directional forces and moments, especially during the 180 deg turn subtask. Finally, the relationship for \dot{V} describes the rate-command, thumb-switch control characteristic for the thrust-vector angle, \dot{V} . The parameter TS was either 0 or 11 and, consequently, the pilot could command a 5 deg/sec rate-of-change of thrust-vector angle (or wing-tilt angle) to trim the effects of the mean wind acting on the aircraft longitudinal drag parameter. For the study of independent thrust-vector control the rate-of-change of thrust-vector angle was treated as a parameter (Section III.A.6.). # B. Characteristics of the Flight Simulator Controls A conventional floor-mounted control stick (the cyclic pitch control stick of the S-61) was used for attitude control. It was used without a force gradient and the inherent friction present was negligible. The full longitudinal and lateral travels of the control stick were ± 6.63 in. and ±6.50 in., respectively. For height control, a conventional, floor-mounted helicopter-type collective control with adjustable friction was used (7.5 in. total travel). The rudder pedals (±3.2 in. total travel) for yaw control did not have a force gradient and the inherent friction was negligible. An on-off thumb-switch control was also used to command a fixed rate-of-change of thrust-vector angle (5 deg/sec). For the study of independent-thrust-vector control (Section III.A.6.) different commanded rates-of-change were considered. Also, for one part of that study the thumb switch was used to control pitch attitude and the cyclic stick controlled thrust-vector angle (Section III.A.6.). #### C. Flight Simulator Motion Washout System A schematic flow diagram for the motion washout interface between the simulated V/STOL aircraft motion (from the equations of motion implemented on an analog computer) and the commanded flight simulator motion is shown in Fig. F-1. This washout system insures that the flight simulator remains within its motion limits. The characteristics of the washout system have been tailored as much as possible to the frequency response features of the human vestibular system (Ref. 11). First-order roll-offs (20 dB/decade) are used to attenuate the low-frequency flight simulator attitude motion. This roll-off at low frequencies is similar to the frequency response of the attitude motion sensors in the vestibular system (the semi-circular canals). Second-order roll-offs are used for the translational motion. Crossfeeds between low-frequency longitudinal and lateral accelerations and pitch and roll attitude, respectively, are used to simulate these accelerations with components of the earth's gravity vector. Because of this feature these low-frequency aircraft accelerations are also subtracted from the simulator translational motion commands. A more complete description of the washout system is contained in Ref. 11. Schematic Diagram of UAC V/STOL Flight Simulator Motion Washout System FIGURE F-1. x -74 33.55 #### REFERENCES - 1. Anon.: MTL-F-83300-Military Specification-Flying Qualities of Piloted V/STOL Aircraft. July 1970. - Schaeffer, J., H. Alscher, G. Steinmetz and J. B. Sinacore: Control Power Usage for Typical Flight Maneuvering in Hover from a Systematic Analysis of Flight Test Data of the VJIO1 Aircraft and of a Hover Rig. ATAA Paper No. 66-816, October 1966. - 3. Schweizer, G. and H. Saelman: The Control Moment Distribution for the Do-31 Hovering Rig. AGARD Report No. 522, 1965. - 4. Niessen, F. R.: Simultaneous Usage of Attitude Control for VTOL Maneuvering Potermined by In-Tight Simulation. NASA TN D-5342, July 1969. - 5. Kelly, J. R., J. F. Garren, Jr. and R. L. Deal: Flight Investigation of V/STOL Height-Control Requirements for Hovering and Low-Speed Flight Under Visual Conditions. NASA TN D-3977, May 1967. - 6. Garren, J. F., Jr. and A. Assadourian: A VTOL Height-Control Requirement in Hovering as Determined From Motion Simulator Study. NASA TN D-1488, October 1962. - 7. Vinje, E. W. and D. P. Miller: Analytical and Flight Simulator Studies to Develop Design Criteria for VTOL Aircraft Control Systems. AFFDL-TR-68-165, prepared by United Aircraft Research Laboratories, April 1969. - 8. Miller, D. P. and E. W. Vinje: Fixed-Base Flight Simulator
Studies of \TOL Aircraft Handling Qualities in Hovering and Low-Speed Flight. AFFDL-TR-67-152, prepared by United Aircraft Research Laboratories, January 1968. - 9. McCormick, R. L.: VTOL Handling Qualities Criteria Study Through Moving-Base Simulation. AFFDL-TR-69-27, October 1969. - 10. Clark, J. W. and D. P. Miller: Research on Factors Influencing Handling Qualities for Precision Hovering and Gun Platform Tasks. Proceedings of the Twenty-First Annual National Forum of the American Helicopter Society, May 1965. - 11. Vinje, E. W. and D. P. Miller: A Motion Washout System for Rotational Moving-Base Simulators. United Aircraft Research Laboratories Report H110606-1, November 1969. # REFERENCES (Cont'd) - 12. Miller, D. P. and J. W. Clark: Research on VTOL Aircraft Handling Qualities Criteria. Journal of Aircraft, Vol. 2, No. 3, May 1965. - 13. Clark, J. W. and D. P. Miller: Control Usage Data in Nover. United Aircraft Research Laboratories Unpublished Memorandum, June 1970. - 14. Vinje, E. W.: An Analysis of Pilot Adaptation in a Simulated Multiloop VTOL Hovering Task. University of Michigan NASA Conference on Menual Control, Ann Arbor, Michigan, April 1968. Also published in the IEEE Transactions on Man-Machine Systems, December 1968. - 15. McRuer, D. T., D. Graham, E. S. Krendell and W. Reisener: Human Filot Dynamics in Compensatory Systems. AFFDL-TR-65-16, July 1965. - 16. Lollar, T. E. and G. K. L. Kriechbaum: VTOL Handling Qualities Criteria and Control Requirements - Analysis and Experiment. Journal of American Helicopter Society, Vol. 13, No. 3, July 1968.